Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariet M. Hefting is active.

Publication


Featured researches published by Mariet M. Hefting.


Biogeochemistry | 2004

Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient

Mariet M. Hefting; Jean-Christophe Clément; David Dowrick; Anne-Claude Cosandey; Susana Bernal; C. Cimpian; A. Tatur; T. P. Burt; Gilles Pinay

Riparian zones have long been considered as nitrate sinks in landscapes. Yet, riparian zones are also known to be very productive ecosystems with a high rate of nitrogen cycling. A key factor regulating processes in the N cycle in these zones is groundwater table fluctuation, which controls aerobic/anaerobic conditions in the soil. Nitrification and denitrification, key processes regulating plant productivity and nitrogen buffering capacities are strictly aerobic and anaerobic processes, respectively. In this study we compared the effects of these factors on the nitrogen cycling in riparian zones under different climatic conditions and N loading at the European scale. No significant differences in nitrification and denitrification rates were found either between climatic regions or between vegetation types. On the other hand, water table elevation turned out to be the prime determinant of the N dynamics and its end product. Three consistent water table thresholds were identified. In sites where the water table level is within −10 cm of the soil surface, ammonification is the main process and ammonium accumulates in the topsoils. Average water tables between −10 and −30 cm favour denitrification and therefore reduce the nitrogen availability in soils. In drier sites, that is, water table level below −30 cm, nitrate accumulates as a result of high net nitrification. At these latter sites, denitrification only occurs in fine textured soils probably triggered by rainfall events. Such a threshold could be used to provide a proxy to translate the consequences of stream flow regime change to nitrogen cycling in riparian zones and consequently, to potential changes in nitrogen mitigation.


Ecosystems | 2003

Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation

Sergi Sabater; Andrea Butturini; Jean-Christophe Clément; T. P. Burt; David Dowrick; Mariet M. Hefting; Véronique Maitre; Gilles Pinay; Carmen Postolache; Marek Rzepecki; Francesc Sabater

AbstractWe evaluated nitrogen (N) removal efficiency by riparian buffers at 14 sites scattered throughout seven European countries subject to a wide range of climatic conditions. The sites also had a wide range of nitrate inputs, soil characteristics, and vegetation types. Dissolved forms of N in groundwater and associated hydrological parameters were measured at all sites; these data were used to calculate nitrate removal by the riparian buffers. Nitrate removal rates (expressed as the difference between the input and output nitrate concentration in relation to the width of the riparian zone) were mainly positive, ranging from 5% m−1 to 30% m−1, except for a few sites where the values were close to zero. Average N removal rates were similar for herbaceous (4.43% m−1) and forested (4.21% m−1) sites. Nitrogen removal efficiency was not affected by climatic variation between sites, and no significant seasonal pattern was detected. When nitrate inputs were low, a very large range of nitrate removal efficiencies was found both in the forested and in the nonforested sites. However, sites receiving nitrate inputs above 5 mg N L−1 showed an exponential negative decay of nitrate removal efficiency (nitrate removal efficiency = 33.6 e−0.11 NO3input, r2 = 0.33, P < 0.001). Hydraulic gradient was also negatively related to nitrate removal (r = −0.27, P < 0.05) at these sites. On the basis of this intersite comparison, we conclude that the removal of nitrate by biological mechanisms (for example, denitrification, plant uptake) in the riparian areas is related more closely to nitrate load and hydraulic gradient than to climatic parameters.


Journal of Hydrology | 2002

Water table fluctuations in the riparian zone: comparative results from a pan-European experiment

T. P. Burt; Gilles Pinay; F.E Matheson; N.E Haycock; Andrea Butturini; Jean-Christophe Clément; S Danielescu; David Dowrick; Mariet M. Hefting; A Hillbricht-Ilkowska; Véronique Maitre

Soil saturation is known to be of crucial importance to denitrification and other nitrogen cycling processes within the riparian zone. Since denitrification potential generally increases towards the soil surface, water table elevation can control the degree to which nitrate reduction is optimised. Given their topographic location and sedimentary structure, most floodplains are characterised by high water tables. However, detailed field data on water table levels, hydraulic gradients and flow patterns within the riparian zone are generally lacking. This paper presents data collected as part of a pan-European study of nitrate buffer zones, the Nitrogen Control by Landscape Structures in Agricultural Environments project (NICOLAS). An identical experimental design was employed at each site, allowing riparian zone hydrology and nitrogen cycling processes to be explored across a wide range of temperate climates; only the hydrological data are discussed here. A grid of dipwells at 10-metre spacing was installed at each site and manual measurements made at least once a month for a minimum of one year. In addition, at least one dipwell in each grid was monitored continuously using a data logger. All the riparian zones studied displayed a clear annual cycle of water table elevation, although other factors seemed equally important in influencing the range of variation. Where the riparian zone was flat, the water level in the adjoining river or lake proved more significant in controlling water table levels within the riparian zone than was originally anticipated.


Philosophical Transactions of the Royal Society B | 2013

Global trends and uncertainties in terrestrial denitrification and N2O emissions

A. F. Bouwman; A. H. W. Beusen; J. Griffioen; J. W. van Groenigen; Mariet M. Hefting; O. Oenema; P.J.T.M. van Puijenbroek; Sybil P. Seitzinger; Caroline P. Slomp; Elke Stehfest

Soil nitrogen (N) budgets are used in a global, distributed flow-path model with 0.5° × 0.5° resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones for the period 1900–2000 and scenarios for the period 2000–2050 based on the Millennium Ecosystem Assessment. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N2 fixation and atmospheric N deposition increased from 155 to 345 Tg N yr−1 (Tg = teragram; 1 Tg = 1012 g) between 1900 and 2000. Depending on the scenario, inputs are estimated to further increase to 408–510 Tg N yr−1 by 2050. In the period 1900–2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr−1, and this may remain stable or further increase to 275 Tg yr−1 by 2050, depending on the scenario. N2 production from denitrification increased from 52 to 96 Tg yr−1 between 1900 and 2000, and N2O–N emissions from 10 to 12 Tg N yr−1. The scenarios foresee a further increase to 142 Tg N2–N and 16 Tg N2O–N yr−1 by 2050. Our results indicate that riparian buffer zones are an important source of N2O contributing an estimated 0.9 Tg N2O–N yr−1 in 2000. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans.


Geobiology | 2011

Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem

R. N. Van Den Heuvel; S. E. Bakker; Mike S. M. Jetten; Mariet M. Hefting

Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils.


Environmental Pollution | 1998

Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study

Mariet M. Hefting; J. J. M. De Klein

Many surface waters in The Netherlands are polluted with nutrients from agricultural land. Riparian buffer zones have been shown to be very valuable in reducing non-point source pollution from agricultural land to streams. The nitrogen removal in two riparian zones vegetated with alder thicket and grass respectively and the contribution of denitrification activity in nitrate removal were investigated. In the period from September 1996 to June 1997, nitrogen transport and denitrification activity in the headwaters of a small stream, the Hazelbeek in Twente, was measured at 11 dates. At all sampling dates we found clear spatial differences in groundwater quality. High nitrate concentrations (>40 mg N l−1) were measured in groundwater tubes placed at the boundary of the agricultural land (maize) and the riparian forest, and lower nitrate concentrations were measured close to the stream (0.1–2 mg N l−1). Stream water quality measurements indicated that (sub) surface flow from the maize field strongly contributed to the nitrogen load in the stream. Results suggest that nitrate concentrations in groundwater decreased by 95% when it flowed through the riparian buffer zone. Denitrification rates measured in the top soil (0–30 cm) of the buffer zones varied between 9 and 200 kg N ha−1 year−1 in the forested buffer zone and between 1.2 and 32 kg N ha−1 year−1 in the grassland buffer zone. The higher denitrification rates measured in the forest zone compared to the grassland zone could be due to the higher availability of nitrate in the forested soil compared to the grassland zone and/or a higher residence time of the water in the forested zone.


Science of The Total Environment | 2009

N2O emission hotspots at different spatial scales and governing factors for small scale hotspots

R. N. Van Den Heuvel; Mariet M. Hefting; N.C.G. Tan; Mike S. M. Jetten; Jos T. A. Verhoeven

Chronically nitrate-loaded riparian buffer zones show high N(2)O emissions. Often, a large part of the N(2)O is emitted from small surface areas, resulting in high spatial variability in these buffer zones. These small surface areas with high N(2)O emissions (hotspots) need to be investigated to generate knowledge on the factors governing N(2)O emissions. In this study the N(2)O emission variability was investigated at different spatial scales. Therefore N(2)O emissions from three 32 m(2) grids were determined in summer and winter. Spatial variation and total emission were determined on three different scales (0.3 m(2), 0.018 m(2) and 0.0013 m(2)) at plots with different levels of N(2)O emissions. Spatial variation was high at all scales determined and highest at the smallest scale. To test possible factors inducing small scale hotspots, soil samples were collected for slurry incubation to determine responses to increased electron donor/acceptor availability. Acetate addition did increase N(2)O production, but nitrate addition failed to increase total denitrification or net N(2)O production. N(2)O production was similar in all soil slurries, independent of their origin from high or low emission soils, indicating that environmental conditions (including physical factors like gas diffusion) rather than microbial community composition governed N(2)O emission rates.


Ecosystems | 2006

Spatial Variation in Denitrification and N2O Emission in Relation to Nitrate Removal Efficiency in a N-stressed Riparian Buffer Zone

Mariet M. Hefting; Roland Bobbink; Merlijn P. Janssens

Spatial variability in hydrological flowpaths and nitrate-removal processes complicates the overall assessment of riparian buffer zone functioning in terms of water quality improvement as well as enhancement of the greenhouse effect by N2O emissions. In this study, we evaluated denitrification and nitrous oxide emission in winter and summer along two groundwater flowpaths in a nitrate-loaded forested riparian buffer zone and related the variability in these processes to controlling soil factors. Denitrification and emissions of N2O were measured using flux chambers and incubation experiments. In winter, N2O emissions were significantly higher (12.4 mg N m−2 d−1) along the flowpath with high nitrate removal compared with the flowpath with low nitrate removal (2.58 mg N m−2 d−1). In summer a reverse pattern was observed, with higher N2O emissions (13.6 mg N m−2 d−1) from the flowpath with low nitrate-removal efficiencies. Distinct spatial patterns of denitrification and N2O emission were observed along the high nitrate-removal transect compared to no clear pattern along the low nitrate-removal transect, where denitrification activity was very low. Results from this study indicate that spots with high nitrate-removal efficiency also contribute significantly to an increased N2O emission from riparian zones. Furthermore, we conclude that high variability in N2O:N2 ratio and weak relationships with environmental conditions limit the value of this ratio as a proxy to evaluate the environmental consequences of riparian buffer zones.


AMBIO: A Journal of the Human Environment | 2012

Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment

Johannes H. C. Cornelissen; Ute Sass-Klaassen; Lourens Poorter; Koert G. van Geffen; Richard S. P. van Logtestijn; Jurgen van Hal; Leo Goudzwaard; Frank J. Sterck; René K. W. M. Klaassen; Grégoire T. Freschet; Annemieke van der Wal; Henk Eshuis; Juan Zuo; Wietse de Boer; Teun Lamers; Monique Weemstra; Vincent Cretin; Rozan Martin; Jan den Ouden; Matty P. Berg; Rien Aerts; G.M.J. Mohren; Mariet M. Hefting

Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term ‘common-garden’ experiment to disentangle the effects of species’ wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.


The ISME Journal | 2013

Microbial minorities modulate methane consumption through niche partitioning

Paul L. E. Bodelier; Marion Meima-Franke; Cornelis A. Hordijk; Anne K. Steenbergh; Mariet M. Hefting; Levente Bodrossy; Martin von Bergen; Jana Seifert

Microbes catalyze all major geochemical cycles on earth. However, the role of microbial traits and community composition in biogeochemical cycles is still poorly understood mainly due to the inability to assess the community members that are actually performing biogeochemical conversions in complex environmental samples. Here we applied a polyphasic approach to assess the role of microbial community composition in modulating methane emission from a riparian floodplain. We show that the dynamics and intensity of methane consumption in riparian wetlands coincide with relative abundance and activity of specific subgroups of methane-oxidizing bacteria (MOB), which can be considered as a minor component of the microbial community in this ecosystem. Microarray-based community composition analyses demonstrated linear relationships of MOB diversity parameters and in vitro methane consumption. Incubations using intact cores in combination with stable isotope labeling of lipids and proteins corroborated the correlative evidence from in vitro incubations demonstrating γ-proteobacterial MOB subgroups to be responsible for methane oxidation. The results obtained within the riparian flooding gradient collectively demonstrate that niche partitioning of MOB within a community comprised of a very limited amount of active species modulates methane consumption and emission from this wetland. The implications of the results obtained for biodiversity–ecosystem functioning are discussed with special reference to the role of spatial and temporal heterogeneity and functional redundancy.

Collaboration


Dive into the Mariet M. Hefting's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Bobbink

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike S. M. Jetten

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Christophe Clément

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge