Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marietta Zille is active.

Publication


Featured researches published by Marietta Zille.


Journal of Cerebral Blood Flow and Metabolism | 2012

Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives

Marietta Zille; Tracy D. Farr; Ingo Przesdzing; Jochen Müller; Clemens Sommer; Ulrich Dirnagl; Andreas Wunder

One of the hallmarks of stroke pathophysiology is the widespread death of many different types of brain cells. As our understanding of the complex disease that is stroke has grown, it is now generally accepted that various different mechanisms can result in cell damage and eventual death. A plethora of techniques is available to identify various pathological features of cell death in stroke; each has its own drawbacks and pitfalls, and most are unable to distinguish between different types of cell death, which partially explains the widespread misuse of many terms. The purpose of this review is to summarize the standard histopathological and immunohistochemical techniques used to identify various pathological features of stroke. We then discuss how these methods should be properly interpreted on the basis of what they are showing, as well as advantages and disadvantages that require consideration. As there is much interest in the visualization of stroke using noninvasive imaging strategies, we also specifically discuss how these techniques can be interpreted within the context of cell death.


PLOS ONE | 2013

Specific Imaging of Inflammation with the 18kDa Translocator Protein Ligand DPA-714 in Animal Models of Epilepsy and Stroke

Denise Harhausen; Violetta Sudmann; Uldus Khojasteh; Jochen Müller; Marietta Zille; Keith Graham; Andrea Thiele; Thomas Dyrks; Ulrich Dirnagl; Andreas Wunder

Inflammation is a pathophysiological hallmark of many diseases of the brain. Specific imaging of cells and molecules that contribute to cerebral inflammation is therefore highly desirable, both for research and in clinical application. The 18 kDa translocator protein (TSPO) has been established as a suitable target for the detection of activated microglia/macrophages. A number of novel TSPO ligands have been developed recently. Here, we evaluated the high affinity TSPO ligand DPA-714 as a marker of brain inflammation in two independent animal models. For the first time, the specificity of radiolabeled DPA-714 for activated microglia/macrophages was studied in a rat model of epilepsy (induced using Kainic acid) and in a mouse model of stroke (transient middle cerebral artery occlusion, tMCAO) using high-resolution autoradiography and immunohistochemistry. Additionally, cold-compound blocking experiments were performed and changes in blood-brain barrier (BBB) permeability were determined. Target-to-background ratios of 2 and 3 were achieved in lesioned vs. unaffected brain tissue in the epilepsy and tMCAO models, respectively. In both models, ligand uptake into the lesion corresponded well with the extent of Ox42- or Iba1-immunoreactive activated microglia/macrophages. In the epilepsy model, ligand uptake was almost completely blocked by pre-injection of DPA-714 and FEDAA1106, another high-affinity TSPO ligand. Ligand uptake was independent of the degree of BBB opening and lesion size in the stroke model. We provide further strong evidence that DPA-714 is a specific ligand to image activated microglia/macrophages in experimental models of brain inflammation.


Stroke | 2017

Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis

Marietta Zille; Saravanan S. Karuppagounder; Yingxin Chen; Peter J. Gough; John Bertin; Joshua N. Finger; Teresa A. Milner; Elizabeth A. Jonas; Rajiv R. Ratan

Background and Purpose— Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the underlying cell death mechanisms attributable to secondary injury by hemoglobin and hemin to broaden treatment options. Methods— We investigated cell death mechanisms in cultured neurons exposed to hemoglobin or hemin. Chemical inhibitors implicated in all known cell death pathways were used. Identified cell death mechanisms were confirmed using molecular markers and electron microscopy. Results— Chemical inhibitors of ferroptosis and necroptosis protected against hemoglobin- and hemin-induced toxicity. By contrast, inhibitors of caspase-dependent apoptosis, protein or mRNA synthesis, autophagy, mitophagy, or parthanatos had no effect. Accordingly, molecular markers of ferroptosis and necroptosis were increased after intracerebral hemorrhage in vitro and in vivo. Electron microscopy showed that hemin induced a necrotic phenotype. Necroptosis and ferroptosis inhibitors each abrogated death by >80% and had similar therapeutic windows in vitro. Conclusions— Experimental intracerebral hemorrhage shares features of ferroptotic and necroptotic cell death, but not caspase-dependent apoptosis or autophagy. We propose that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.


Journal of Cerebral Blood Flow and Metabolism | 2014

Monitoring stroke progression: in vivo imaging of cortical perfusion, blood–brain barrier permeability and cellular damage in the rat photothrombosis model

Karl Schoknecht; Ofer Prager; Udi Vazana; Lyn Kamintsky; Denise Harhausen; Marietta Zille; Lena Figge; Yoash Chassidim; Eyk Schellenberger; Richard Kovács; Uwe Heinemann; Alon Friedman

Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.


The Journal of Nuclear Medicine | 2014

XTEN-annexin A5: XTEN allows complete expression of long-circulating protein-based imaging probes as recombinant alternative to PEGylation.

Akvile Haeckel; Franziska Appler; Lena Figge; Harald Kratz; Mathias Lukas; Roger Michel; Jörg Schnorr; Marietta Zille; Bernd Hamm; Eyk Schellenberger

The coupling of polyethylene glycol (PEG) to proteins (PEGylation) has become a standard method to prolong blood circulation of imaging probes and other proteins, liposomes, and nanoparticles. However, concerns have arisen about the safety of PEG, especially with respect to its poor biodegradability and antibody formation, including new evidence about preformed anti-PEG antibodies in a quarter of healthy blood donors. Here, we apply a new hydrophilic polypeptide XTEN to extend the blood half-life of an imaging probe. As an example, we chose annexin A5 (AnxA5), a recombinant 35-kD protein extensively used for the in vitro and in vivo detection of apoptosis, that has a blood half-life of less than 7 min in mice, limiting its accumulation in target tissues and therefore limiting its utility as an imaging reagent. Methods: The sequence of XTEN was developed by Volker Schellenberger and colleagues by evolutionary in vitro optimization to yield PEG-like properties but provides several key advantages in comparison to PEG. The DNA of a 288-amino-acid version of XTEN with an additional N-terminal cysteine for site-directed coupling was fused to AnxA5 (XTEN-AnxA5). The fusion protein could be highly expressed in Escherichia coli and efficiently purified using XTEN conveniently as a purification tag. It was labeled with a thiol-reactive fluorescent dye and via a chelator with a radionuclide. Results: SPECT/CT imaging revealed a blood half-life of about 1 h in mice, markedly longer than the 7-min blood half-life for unmodified AnxA5, which should allow improved imaging of target tissues with low perfusion. In comparison to AnxA5, XTEN-AnxA5 demonstrated a substantially higher accumulation in tumors under chemotherapy in near-infrared fluorescence imaging. Conclusion: The presented method allows the expression and production of high amounts of long-circulating XTEN-AnxA5 without the necessity of PEGylation, thereby simplifying the synthesis while avoiding labeling-induced inactivation of AnxA5 and potential adverse effects of PEG. It is readily applicable to other recombinant protein or peptide-based imaging probes and allows fine-tuning of the desired blood half-life, because longer XTEN variants yield longer blood half-lives.


Brain Research | 2015

Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases

Saravanan S. Karuppagounder; Amit Kumar; Diana S. Shao; Marietta Zille; Megan W. Bourassa; Joseph T. Caulfield; Ishraq Alim; Rajiv R. Ratan

Modern definitions of epigenetics incorporate models for transient but biologically important changes in gene expression that are unrelated to DNA code but responsive to environmental changes such as injury-induced stress. In this scheme, changes in oxygen levels (hypoxia) and/or metabolic co-factors (iron deficiency or diminished 2-oxoglutarate levels) are transduced into broad genetic programs that return the cell and the organism to a homeostatic set point. Over the past two decades, exciting studies have identified a superfamily of iron-, oxygen-, and 2-oxoglutarate-dependent dioxygenases that sit in the nucleus as modulators of transcription factor stability, co-activator function, histone demethylases, and DNA demethylases. These studies have provided a concrete molecular scheme for how changes in metabolism observed in a host of neurological conditions, including stroke, traumatic brain injury, and Alzheimers disease, could be transduced into adaptive gene expression to protect the nervous system. We will discuss these enzymes in this short review, focusing primarily on the ten eleven translocation (TET) DNA demethylases, the jumonji (JmJc) histone demethylases, and the oxygen-sensing prolyl hydroxylase domain enzymes (HIF PHDs). This article is part of a Special Issue entitled SI: Neuroprotection.


PLOS ONE | 2014

Influence of Pigment Epithelium-Derived Factor on Outcome after Striatal Cerebral Ischemia in the Mouse

Marietta Zille; Arina Riabinska; Menderes Yusuf Terzi; Mustafa Balkaya; Vincent Prinz; Bettina Schmerl; Melina Nieminen-Kelhä; Matthias Endres; Peter Vajkoczy; Ana Pina

We here suggest that pigment epithelium-derived factor (PEDF) does not have an effect on lesion size, behavioral outcome, cell proliferation, or cell death after striatal ischemia in the mouse. PEDF is a neurotrophic factor with neuroprotective, antiangiogenic, and antipermeability effects. It influences self-renewal of neural stem cells and proliferation of microglia. We investigated whether intraventricular infusion of PEDF reduces infarct size and cell death, ameliorates behavioral outcome, and influences cell proliferation in the one-hour middle cerebral artery occlusion (MCAO) mouse model of focal cerebral ischemia. C57Bl6/N mice were implanted with PEDF or artificial cerebrospinal fluid (control) osmotic pumps and subjected to 60-minute MCAO 48 hours after pump implantation. They received daily BrdU injections for 7 days after MCAO in order to investigate cell proliferation. Infarct volumes were determined 24 hours after reperfusion using magnetic resonance imaging. We removed the pumps on day 5 and performed behavioral testing between day 7 and 21. Immunohistochemical staining was performed to determine the effect of PEDF on cell proliferation and cell death. Our model produced an ischemic injury confined solely to striatal damage. We detected no reduction in infarct sizes and cell death in PEDF- vs. CSF-infused MCAO mice. Behavioral outcome and cell proliferation did not differ between the groups. However, we cannot exclude that PEDF might work under different conditions in stroke. Further studies will elucidate the effect of PEDF treatment on cell proliferation and behavioral outcome in moderate to severe ischemic injury in the brain.


Stroke | 2017

Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment

Philipp Boehm-Sturm; Martina Füchtemeier; Marco Foddis; Susanne Mueller; Rebecca C. Trueman; Marietta Zille; Jan Leo Rinnenthal; Theodore Kypraios; Laurence Shaw; Ulrich Dirnagl; Tracy D. Farr

Background and Purpose— Chronic hypoperfusion in the mouse brain has been suggested to mimic aspects of vascular cognitive impairment, such as white matter damage. Although this model has attracted attention, our group has struggled to generate a reliable cognitive and pathological phenotype. This study aimed to identify neuroimaging biomarkers of brain pathology in aged, more severely hypoperfused mice. Methods— We used magnetic resonance imaging to characterize brain degeneration in mice hypoperfused by refining the surgical procedure to use the smallest reported diameter microcoils (160 &mgr;m). Results— Acute cerebral blood flow decreases were observed in the hypoperfused group that recovered over 1 month and coincided with arterial remodeling. Increasing hypoperfusion resulted in a reduction in spatial learning abilities in the water maze that has not been previously reported. We were unable to observe severe white matter damage with histology, but a novel approach to analyze diffusion tensor imaging data, graph theory, revealed substantial reorganization of the hypoperfused brain network. A logistic regression model from the data revealed that 3 network parameters were particularly efficient at predicting group membership (global and local efficiency and degrees), and clustering coefficient was correlated with performance in the water maze. Conclusions— Overall, these findings suggest that, despite the autoregulatory abilities of the mouse brain to compensate for a sudden decrease in blood flow, there is evidence of change in the brain networks that can be used as neuroimaging biomarkers to predict outcome.


Restorative Neurology and Neuroscience | 2015

Effects of pigment epithelium-derived factor on traumatic brain injury

Menderes Yusuf Terzi; Pablo A. Casalis; Veronika Lang; Marietta Zille; Elisabeth Bründl; Eva-Maria Störr; Alexander Brawanski; Peter Vajkoczy; Ulrich W. Thomale; Ana Luisa Pina

PURPOSE Pigment epithelium-derived factor (PEDF) is a multifunctional protein with antiangiogenic, anti-inflammatory, neurotrophic and neurogenic properties. The effect of PEDF on traumatic brain injury (TBI) has not been explored. In this study, we aimed to show the in vivo effects of PEDF on lesion volume, cell death and cell proliferation after TBI. METHODS Rats were subjected to controlled cortical impact injury (CCII). PEDF mRNA brain levels were measured by RT-PCR. The lesion volume, cell proliferation, cell death and microglia activation were assessed in the brains of lesioned animals with intraventricular alzet infusion of PEDF or aCSF, and intraperitoneal injections of BrdU. RESULTS We detected a significant increase of PEDF mRNA levels after TBI. PEDF intraventricular infusion showed no significant effect on the contusion volume, whereas the number of dead cells, activated microglia, BrdU-positive cells around the lesion were significantly decreased. In contrast, PEDF application increased cell proliferation in the ipsilateral subventricular zone. No effect was found on cell proliferation in the dentate gyrus. CONCLUSION The present work indicates that PEDF acts as a multifunctional agent after TBI influencing cell death, inflammation and cell proliferation.


Restorative Neurology and Neuroscience | 2017

Recent progress in translational research on neurovascular and neurodegenerative disorders

Hans Ulrich Demuth; Rick M. Dijkhuizen; Tracy D. Farr; Mathias Gelderblom; Karen Horsburgh; Costantino Iadecola; Damian McLeod; Dominik Michalski; Timothy H. Murphy; Josune Orbe; Willem M. Otte; Gabor C. Petzold; Nikolaus Plesnila; Georg Reiser; Klaus G. Reymann; Maria Adele Rueger; Dorothee Saur; Sean I. Savitz; Stephan Schilling; Neil J. Spratt; Renée J. Turner; Raghu Vemuganti; Denis Vivien; Manuel Yepes; Marietta Zille; Johannes Boltze

The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient’s outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms. This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations.

Collaboration


Dive into the Marietta Zille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge