Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marij J. P. Welters is active.

Publication


Featured researches published by Marij J. P. Welters.


The New England Journal of Medicine | 2009

Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia

Gemma G. Kenter; Marij J. P. Welters; A. Rob P. M. Valentijn; Margriet J. G. Löwik; Dorien M. A. Berends-van der Meer; Annelies P.G. Vloon; Farah Essahsah; Lorraine M. Fathers; Rienk Offringa; Jan W. Drijfhout; Amon R. Wafelman; Jaap Oostendorp; Gert Jan Fleuren; Sjoerd H. van der Burg; Cornelis J. M. Melief

BACKGROUND Vulvar intraepithelial neoplasia is a chronic disorder caused by high-risk types of human papillomavirus (HPV), most commonly HPV type 16 (HPV-16). Spontaneous regression occurs in less than 1.5% of patients, and the rate of recurrence after treatment is high. METHODS We investigated the immunogenicity and efficacy of a synthetic long-peptide vaccine in women with HPV-16-positive, high-grade vulvar intraepithelial neoplasia. Twenty women with HPV-16-positive, grade 3 vulvar intraepithelial neoplasia were vaccinated three or four times with a mix of long peptides from the HPV-16 viral oncoproteins E6 and E7 in incomplete Freunds adjuvant. The end points were clinical and HPV-16-specific T-cell responses. RESULTS The most common adverse events were local swelling in 100% of the patients and fever in 64% of the patients; none of these events exceeded grade 2 of the Common Terminology Criteria for Adverse Events of the National Cancer Institute. At 3 months after the last vaccination, 12 of 20 patients (60%; 95% confidence interval [CI], 36 to 81) had clinical responses and reported relief of symptoms. Five women had complete regression of the lesions, and HPV-16 was no longer detectable in four of them. At 12 months of follow-up, 15 of 19 patients had clinical responses (79%; 95% CI, 54 to 94), with a complete response in 9 of 19 patients (47%; 95% CI, 24 to 71). The complete-response rate was maintained at 24 months of follow-up. All patients had vaccine-induced T-cell responses, and post hoc analyses suggested that patients with a complete response at 3 months had a significantly stronger interferon-gamma-associated proliferative CD4+ T-cell response and a broad response of CD8+ interferon-gamma T cells than did patients without a complete response. CONCLUSIONS Clinical responses in women with HPV-16-positive, grade 3 vulvar intraepithelial neoplasia can be achieved by vaccination with a synthetic long-peptide vaccine against the HPV-16 oncoproteins E6 and E7. Complete responses appear to be correlated with induction of HPV-16-specific immunity.


Clinical Cancer Research | 2008

Induction of Tumor-Specific CD4+ and CD8+ T-Cell Immunity in Cervical Cancer Patients by a Human Papillomavirus Type 16 E6 and E7 Long Peptides Vaccine

Marij J. P. Welters; Gemma G. Kenter; Sytse J. Piersma; Annelies P.G. Vloon; Margriet J. G. Löwik; Dorien M. A. Berends-van der Meer; Jan W. Drijfhout; A. Rob P. M. Valentijn; Amon R. Wafelman; Jaap Oostendorp; Gert Jan Fleuren; Rienk Offringa; Cornelis J. M. Melief; Sjoerd H. van der Burg

Purpose: The study aims to evaluate the effect of a human papillomavirus type 16 (HPV16) E6 and E7 synthetic long peptides vaccine on the antigen-specific T-cell response in cervical cancer patients. Experimental Design: Patients with resected HPV16-positive cervical cancer were vaccinated with an overlapping set of long peptides comprising the sequences of the HPV16 E6 and E7 oncoproteins emulsified in Montanide ISA-51. HPV16-specific T-cell immune responses were analyzed by evaluating the magnitude, breadth, type, and polarization by proliferation assays, IFNγ-ELISPOT, and cytokine production and phenotyped by the T-cell markers CD4, CD8, CD25, and Foxp3. Results: Vaccine-induced T-cell responses against HPV16 E6 and E7 were detected in six of six and five of six patients, respectively. These responses were broad, involved both CD4+ and CD8+ T cells, and could be detected up to 12 months after the last vaccination. The vaccine-induced responses were dominated by effector type CD4+CD25+Foxp3− type 1 cytokine IFNγ-producing T cells but also included the expansion of T cells with a CD4+CD25+Foxp3+ phenotype. Conclusions: The HPV16 E6 and E7 synthetic long peptides vaccine is highly immunogenic, in that it increases the number and activity of HPV16-specific CD4+ and CD8+ T cells to a broad array of epitopes in all patients. The expansion of CD4+ and CD8+ tumor-specific T cells, both considered to be important in the antitumor response, indicates the immunotherapeutic potential of this vaccine. Notably, part of the vaccine-induced T cells display a CD4+CD25+Foxp3+ phenotype that is frequently associated with regulatory T-cell function, suggesting that strategies to disarm this subset of T cells should be considered as components of immunotherapeutic modalities against HPV-induced cancers.


Clinical Cancer Research | 2008

Phase I Immunotherapeutic Trial with Long Peptides Spanning the E6 and E7 Sequences of High-Risk Human Papillomavirus 16 in End-Stage Cervical Cancer Patients Shows Low Toxicity and Robust Immunogenicity

Gemma G. Kenter; Marij J. P. Welters; A. Rob P. M. Valentijn; Margriet J. G. Löwik; Dorien M. A. Berends-van der Meer; Annelies P.G. Vloon; Jan W. Drijfhout; Amon R. Wafelman; Jaap Oostendorp; Gert Jan Fleuren; Rienk Offringa; Sjoerd H. van der Burg; Cornelis J. M. Melief

Purpose: To determine the toxicity, safety, and immunogenicity of a human papillomavirus 16 (HPV16) E6 and E7 long peptide vaccine administered to end-stage cervical cancer patients. Experimental Design: Three groups of end-stage cervical cancer patients (in total n = 35) were s.c. vaccinated with HPV16 E6 combined with or separated from HPV16 E7 overlapping long peptides in Montanide ISA-51 adjuvant, four times at 3-week intervals. Group 1 received 300 μg/peptide at a single site and group 2 received 100 μg/peptide of the E6 peptides in one limb and 300 μg/peptide of the E7 peptides in a second limb. Group 3 received separate injections of E6 and E7 peptides, each at a dose of 50 μg/peptide. The primary end point was to determine safety and toxicity of the HPV16 long peptides vaccine. In addition, the vaccine-induced T-cell response was assessed by IFNγ enzyme-linked immunospot. Results: No toxicity beyond grade 2 was observed during and after four vaccinations. In a few patients, transient flu-like symptoms were observed. Enzyme-linked immunospot analysis of the vaccine-induced immune response revealed that coinjection of the E6 and E7 peptides resulted in a strong and broad T-cell response dominated by immunity against E6. Injection of the E6 and E7 peptides at two different sites increased the E7 response but did not affect the magnitude of the E6-induced immune response. Conclusions: The HPV16 E6 and E7 long peptide-based vaccine is well tolerated and capable of inducing a broad IFNγ-associated T-cell response even in end-stage cervical cancer patients.


Journal of Immunology | 2011

M2 Macrophages Induced by Prostaglandin E2 and IL-6 from Cervical Carcinoma Are Switched to Activated M1 Macrophages by CD4+ Th1 Cells

Moniek Heusinkveld; Peggy J. de Vos van Steenwijk; Renske Goedemans; Tamara H. Ramwadhdoebe; Arko Gorter; Marij J. P. Welters; Thorbald van Hall; Sjoerd H. van der Burg

Monocytes attracted by tumor-induced chronic inflammation differentiate to APCs, the type of which depends on cues in the local tumor milieu. In this work, we studied the influence of human cervical cancer cells on monocyte differentiation and showed that the majority of cancer cells either hampered monocyte to dendritic cell differentiation or skewed their differentiation toward M2-like macrophages. Blocking studies revealed that M2 differentiation was caused by tumor-produced PGE2 and IL-6. TGF-β, IL-10, VEGF, and macrophage colony-stimulating factor did not play a role. Notably, these CD14+CD163+ M2 macrophages were also detected in situ. Activation of cancer cell-induced M2-like macrophages by several TLR-agonists revealed that compared with dendritic cells, these M2 macrophages displayed a tolerogenic phenotype reflected by a lower expression of costimulatory molecules, an altered balance in IL-12p70 and IL-10 production, and a poor capacity to stimulate T cell proliferation and IFN-γ production. Notably, upon cognate interaction with Th1 cells, these tumor-induced M2 macrophages could be switched to activated M1-like macrophages that expressed high levels of costimulatory molecules, produced high amounts of IL-12 and low amounts of IL-10, and acquired the lymphoid homing marker CCR7. The effects of the interaction between M2 macrophages and Th1 cells could partially be mimicked by activation of these APCs via CD40 in the presence of IFN-γ. Our data on the presence, induction, and plasticity of tumor-induced tolerogenic APCs in cervical cancer suggest that tumor-infiltrated Th1 cells can stimulate a tumor-rejecting environment by switching M2 macrophages to classical proinflammatory M1 macrophages.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses

Marij J. P. Welters; Gemma G. Kenter; Peggy J. de Vos van Steenwijk; Margriet J. G. Löwik; Dorien M. A. Berends-van der Meer; Farah Essahsah; Linda F. M. Stynenbosch; Annelies P.G. Vloon; Tamara H. Ramwadhdoebe; Sytse J. Piersma; Jeanette M. van der Hulst; A. Rob P. M. Valentijn; Lorraine M. Fathers; Jan W. Drijfhout; Kees L. M. C. Franken; Jaap Oostendorp; Gert Jan Fleuren; Cornelis J. M. Melief; Sjoerd H. van der Burg

One half of a group of 20 patients with human papillomavirus type 16 (HPV16)-induced vulvar intraepithelial neoplasia grade 3 displayed a complete regression (CR) after therapeutic vaccination with HPV16 E6/E7 synthetic long peptides. Patients with relatively larger lesions generally did not display a CR. To investigate immune correlates of treatment failure, patients were grouped according to median lesion size at study entry, and HPV16-specific immunity was analyzed at different time points by complementary immunological assays. The group of patients with smaller lesions displayed stronger and broader vaccine-prompted HPV16-specific proliferative responses with higher IFNγ (P = 0.0003) and IL-5 (P < 0.0001) levels than patients with large lesions. Characteristically, this response was accompanied by a distinct peak in cytokine levels after the first vaccination. In contrast, the patient group with larger lesions mounted higher frequencies of HPV16-specific CD4+CD25+Foxp3+ T cells (P = 0.005) and displayed a lower HPV16-specific IFNγ/IL-10 ratio after vaccination (P < 0.01). No disparity in T memory immunity to control antigens was found, indicating that the differences in HPV-specific immunity did not reflect general immune failure. We observed a strong correlation between a defined set of vaccine-prompted specific immune responses and the clinical efficacy of therapeutic vaccination. Notably, a high ratio of HPV16-specific vaccine-prompted effector T cells to HPV16-specific CD4+CD25+Foxp3+ T cells was predictive of clinical success. Foxp3+ T cells have been associated previously with impaired immunity in malignancies. Here we demonstrate that the vaccine-prompted level of this population is associated with early treatment failure.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens

Sjoerd H. van der Burg; Sytse J. Piersma; Annemieke de Jong; Jeanette M. van der Hulst; Kitty M. C. Kwappenberg; Muriel van den Hende; Marij J. P. Welters; Jon J. van Rood; Gert Jan Fleuren; Cornelis J. M. Melief; Gemma G. Kenter; Rienk Offringa

Because of their important role in the maintenance of self-tolerance, CD4+ regulatory T cells prevent autoimmune diseases but also curtail the efficacy of T cell immune responses against cancers. We now show that this suppressive action of CD4+ regulatory T cells is not limited to cancers displaying tumor-associated self antigens, such as melanomas, but also extends to human papillomavirus (HPV)-positive cervical cancers that express foreign tumor antigens. HPV-specific CD4+ T cells isolated from lymph node biopsies of cervical cancer patients were found to suppress proliferation and cytokine (IFN-γ, IL-2) production by responder T cells. The capacity of HPV-specific CD4+ T cells to exert this suppressive effect depended on their activation by cognate HPV antigen and on close-range interactions with responder T cells. HPV-specific CD4+ regulatory T cells were also retrieved from cervical cancer biopsies, suggesting that they interfere with the anti-tumor immune response at both the induction and effector levels. Our findings offer a plausible explanation for the observed failure of the tumor-specific immune response in patients with cervical carcinoma.


Science Translational Medicine | 2014

Anti–CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response

Pia Kvistborg; Daisy Philips; Sander Kelderman; Lois Hageman; Christian Ottensmeier; Deborah Joseph-Pietras; Marij J. P. Welters; Sjoerd H. van der Burg; Ellen Kapiteijn; Olivier Michielin; Emanuela Romano; Carsten Linnemann; Daniel E. Speiser; Christian U. Blank; John B. A. G. Haanen; Ton N. M. Schumacher

Anti–CTLA-4 treatment increases the diversity of the melanoma-specific CD8 T cell response. Anti–CTLA-4 Therapy Expands T Cell Range An antibody to the immune inhibitory molecule CTLA-4, ipilimumab, can improve survival in patients with advanced melanoma. However, how anti–CTLA-4 works to improve the tumor immune response in humans remains unclear. Now, Kvistborg et al. show that although the magnitude of T cell responses was largely unaltered after therapy, the number of different T cell responses was significantly increased. Indeed, this increased breadth suggests that anti–CTLA-4 may work by increasing priming of T cells to tumor-related antigens rather than boosting preexisting immune responses. If so, other strategies that improve the range of T cells may have similar success battling cancer. Anti–CTLA-4 treatment improves the survival of patients with advanced-stage melanoma. However, although the anti–CTLA-4 antibody ipilimumab is now an approved treatment for patients with metastatic disease, it remains unknown by which mechanism it boosts tumor-specific T cell activity. In particular, it is unclear whether treatment amplifies previously induced T cell responses or whether it induces new tumor-specific T cell reactivities. Using a combination ultraviolet (UV)–induced peptide exchange and peptide–major histocompatibility complex (pMHC) combinatorial coding, we monitored immune reactivity against a panel of 145 melanoma-associated epitopes in a cohort of patients receiving anti–CTLA-4 treatment. Comparison of pre- and posttreatment T cell reactivities in peripheral blood mononuclear cell samples of 40 melanoma patients demonstrated that anti–CTLA-4 treatment induces a significant increase in the number of detectable melanoma-specific CD8 T cell responses (P = 0.0009). In striking contrast, the magnitude of both virus-specific and melanoma-specific T cell responses that were already detected before start of therapy remained unaltered by treatment (P = 0.74). The observation that anti–CTLA-4 treatment induces a significant number of newly detected T cell responses—but only infrequently boosts preexisting immune responses—provides strong evidence for anti–CTLA-4 therapy–enhanced T cell priming as a component of the clinical mode of action.


Cancer Immunology, Immunotherapy | 2008

The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays

Cedrik M. Britten; Cécile Gouttefangeas; Marij J. P. Welters; Graham Pawelec; Sven Koch; Christian Ottensmeier; Ann Mander; Steffen Walter; A. Paschen; J. Müller-Berghaus; I. Haas; Andreas Mackensen; Tania Køllgaard; P thor Straten; Michael Schmitt; K. Giannopoulos; R. Maier; H. Veelken; C. Bertinetti; A. Konur; Christoph Huber; Stefan Stevanovic; T. Wölfel; S. H. van der Burg

The interpretation of the results obtained from immunomonitoring of clinical trials is a difficult task due to the variety of methods and protocols available to detect vaccine-specific T-cell responses. This heterogeneity as well as the lack of standards has led to significant scepticism towards published results. In February 2005, a working group was therefore founded under the aegis of the Association for Immunotherapy of Cancer (“CIMT”) in order to compare techniques and protocols applied for the enumeration of antigen-specific T-cell responses. Here we present the results from two consecutive phases of an international inter-laboratory testing project referred to as the “CIMT monitoring panel”. A total of 13 centers from six European countries participated in the study in which pre-tested PBMC samples, synthetic peptides and PE-conjugated HLA-tetramers were prepared centrally and distributed to participants. All were asked to determine the number of antigen-specific T-cells in each sample using tetramer staining and one functional assay. The results of the first testing round revealed that the total number of cells analyzed was the most important determinant for the sensitive detection of antigen-specific CD8+ T-cells by tetramer staining. Analysis by ELISPOT was influenced by a combination of cell number and a resting phase after thawing of peripheral blood mononuclear cells. Therefore, the experiments were repeated in a second phase but now the participants were asked to change their protocols according to the new guidelines distilled from the results of the first phase. The recommendations improved the number of antigen-specific T-cell responses that were detected and decreased the variability between the laboratories. We conclude that a two-step approach in inter-laboratory testing allows the identification of distinct variables that influence the sensitivity of different T-cell assays and to formally show that a defined correction to the protocols successfully increases the sensitivity and reduces the inter-center variability. Such “two-step” inter-laboratory projects could define rational bases for accepted international guidelines and thereby lead to the harmonization of the techniques used for immune monitoring.


Cancer Immunology, Immunotherapy | 2010

Response definition criteria for ELISPOT assays revisited

Zoe Moodie; Leah Price; Cécile Gouttefangeas; Ann Mander; Sylvia Janetzki; Martin Löwer; Marij J. P. Welters; Christian Ottensmeier; S. H. van der Burg; Cedrik M. Britten

No consensus has been reached on how to determine if an immune response has been detected based on raw data from an ELISPOT assay. The goal of this paper is to enable investigators to understand and readily implement currently available methods for response determination. We describe empirical and statistical approaches, identifying the strengths and limitations of each approach to allow readers to rationally select and apply a scientifically sound method appropriate to their specific laboratory setting. Five representative approaches were applied to data sets from the CIMT Immunoguiding Program and the response detection and false positive rates were compared. Simulation studies were also performed to compare empirical and statistical approaches. Based on these, we recommend the use of a non-parametric statistical test. Further, we recommend that six medium control wells or four wells each for both medium control and experimental conditions be performed to increase the sensitivity in detecting a response, that replicates with large variation in spot counts be filtered out, and that positive responses arising from experimental spot counts below the estimated limit of detection be interpreted with caution. Moreover, a web-based user interface was developed to allow easy access to the recommended statistical methods. This interface allows the user to upload data from an ELISPOT assay and obtain an output file of the binary responses.


Clinical Cancer Research | 2009

Induction of p53-Specific Immunity by a p53 Synthetic Long Peptide Vaccine in Patients Treated for Metastatic Colorectal Cancer

Frank M. Speetjens; Peter J. K. Kuppen; Marij J. P. Welters; Farah Essahsah; Anne Marie E.G. Voet van den Brink; M. Graziella Kallenberg Lantrua; A. Rob P. M. Valentijn; Jaap Oostendorp; Lorraine M. Fathers; Hans W. Nijman; Jan W. Drijfhout; Cornelis J. H. van de Velde; Cornelis J. M. Melief; Sjoerd H. van der Burg

Purpose: The tumor-associated self-antigen p53 is commonly overexpressed in cancer, including colorectal cancer, and can serve as a target for immunotherapy. The safety and immunogenicity of a p53 synthetic long peptide (p53-SLP) vaccine were investigated in patients treated for metastatic colorectal cancer. Experimental Design: Ten patients were vaccinated twice with a set of 10 overlapping p53-SLP in a phase I/II trial. Both the safety and the breadth, magnitude, and polarization of vaccine-induced p53-specific T cells was evaluated in blood samples drawn before and after vaccination by IFN-γ enzyme-linked immunospot, proliferation, cytokine secretion, and multiparameter flow cytometry. The migratory capacity of p53-specific T cells was evaluated by assessing their presence in a biopsy of the second vaccination site. Results: Toxicity was limited to grade 1/2, mostly at the vaccination site. p53-specific T-cell responses were induced in 9 of 10 colorectal cancer patients as measured by IFN-γ enzyme-linked immunospot, proliferation, and cytokine bead array. In 6 of 9 tested patients, p53-specific T-cell reactivity persisted at least 6 months. Furthermore, p53-specific T cells isolated from the vaccination site were characterized as CD4+ T cells producing both T-helper types 1 and 2 cytokines on stimulation with p53 peptide and p53 protein. Multiparameter flow cytometry revealed that only a minor population of the p53-specific CD4+ T cells was optimally polarized. Conclusions: The p53-SLP vaccine is safe and capable to induce p53-specific T-cell responses in patients treated for colorectal cancer. New trials should focus on improving the polarization of the p53-SLP vaccine-induced T-cell response.

Collaboration


Dive into the Marij J. P. Welters's collaboration.

Top Co-Authors

Avatar

Sjoerd H. van der Burg

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cornelis J. M. Melief

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gemma G. Kenter

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Cedrik M. Britten

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rienk Offringa

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jaap Oostendorp

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

A. Rob P. M. Valentijn

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Judith R. Kroep

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge