Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marija Cvetanovic is active.

Publication


Featured researches published by Marija Cvetanovic.


Journal of Immunology | 2004

Innate Immune Discrimination of Apoptotic Cells: Repression of Proinflammatory Macrophage Transcription Is Coupled Directly to Specific Recognition

Marija Cvetanovic; David S. Ucker

Physiological cell death is a process the purpose of which is the elimination of functionally inappropriate cells in a manner that does not elicit an inflammatory response. We have shown previously that the ability of apoptotic corpses to be recognized by macrophages and to modulate the proinflammatory responses of those cells represents paradoxically a gain-of-function acquired during the physiological cell death process. Cells that die pathologically (that is, necrotic vs apoptotic corpses) also are recognized by macrophages but do not down-regulate macrophage inflammatory responses; the recognition of these two classes of native dying cells occurs via distinct and noncompeting mechanisms. We have examined the apoptotic modulation of proinflammatory cytokine gene transcription in macrophages (by real-time RT-PCR analysis) and the corresponding modulation of transcriptional activators (by transcriptional reporter analyses). Our data demonstrate that apoptotic cells target the proinflammatory transcriptional machinery of macrophages with which they interact, without apparent effect on proximal steps of Toll-like receptor signaling. The modulatory activity of the corpse is manifest as an immediate-early inhibition of proinflammatory cytokine gene transcription, and is exerted directly upon binding to the macrophage, independent of subsequent engulfment and soluble factor involvement. Recognition and inflammatory modulation represent key elements of an innate immune response that discriminates live from effete cells, and without regard to self.


Journal of Biological Chemistry | 2006

Specific recognition of apoptotic cells reveals a ubiquitous and unconventional innate immunity

Marija Cvetanovic; Justin E. Mitchell; Vimal A. Patel; Benjamin S. Avner; Yan Su; Paul T. van der Saag; Pamela L. Witte; Stefano Fiore; Jerrold S. Levine; David S. Ucker

The purpose of physiological cell death is the noninflammatory clearance of cells that have become inappropriate or nonfunctional. Consistent with this function, the recognition of apoptotic cells by professional phagocytes, including macrophages and dendritic cells, triggers a set of potent anti-inflammatory responses manifest on multiple levels. The immediate-early inhibition of proinflammatory cytokine gene transcription in the phagocyte is a proximate consequence of recognition of the apoptotic corpse, independent of subsequent engulfment and soluble factor involvement. Here, we show that recognition is linked to a characteristic signature of responses, including MAPK signaling events and the ablation of proinflammatory transcription and cytokine secretion. Specific recognition and response occurs without regard to the origin (species, tissue type, or suicidal stimulus) of the apoptotic cell and does not involve Toll-like receptor signaling. These features mark this as an innate immunity fundamentally distinct from the discrimination of “self” versus “other” considered to be the hallmark of conventional immunity. This profound unconventional innate immune discrimination of effete from live cells is as ubiquitous as apoptotic cell death itself, manifest by professional and nonprofessional phagocytes and nonphagocytic cell types alike. Innate apoptotic immunity provides an intrinsic anti-inflammatory circuit that attenuates proinflammatory responses dynamically and may act systemically as a powerful physiological regulator of immunity.


Journal of Biological Chemistry | 2006

The Presumptive Phosphatidylserine Receptor Is Dispensable for Innate Anti-inflammatory Recognition and Clearance of Apoptotic Cells

Justin E. Mitchell; Marija Cvetanovic; Nitu Tibrewal; Vimal A. Patel; Oscar R. Colamonici; Ming O. Li; Richard A. Flavell; Jerrold S. Levine; Raymond B. Birge; David S. Ucker

The role of the presumptive phosphatidylserine receptor (PSR) in the recognition and engulfment of apoptotic cells, and the antiinflammatory response they exert, has been of great interest. Genetic deficiency of PSR in the mouse is lethal perinatally, and results to date have been ambiguous with regard to the phagocytic and inflammatory phenotypes associated with that deficiency. Recently, we found that the specific functional recognition of apoptotic cells is a ubiquitous property of virtually all cell types, including mouse embryo fibroblasts, and reflects an innate immunity that discriminates live from effete cells. Taking advantage of this property of fibroblasts, we generated, PSR+/+, PSR+/-, and PSR-/- fibroblast cell lines to examine definitively the involvement of PSR in apoptotic recognition and inflammatory modulation. Our data demonstrate that PSR-deficient cells are fully competent to recognize, engulf, and respond to apoptotic cells. Signal transduction in the responder cells, including the activation of Akt and Rac1, is unimpaired in the absence of PSR. We confirm as well that PSR is localized predominantly to the nucleus. However, it does not play a role in pro-inflammatory transcription or in the anti-inflammatory modulation of that transcriptional response triggered by apoptotic cells. We conclude that PSR is not involved generally in either specific innate recognition or engulfment of apoptotic cells.


Nature Medicine | 2011

Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1

Marija Cvetanovic; Jay M Patel; Hugo H. Marti; Ameet R. Kini; Puneet Opal

SCA1 is an adult-onset, dominantly inherited neurodegenerative disease caused by expansion of a glutamine repeat tract in ATXN1. Although the precise function of ATXN1 remains elusive, it appears to play a role in transcriptional repression. We find that mutant ATXN1 suppresses transcription of the neurotrophic and angiogenic factor VEGF. We also show that genetic or pharmacologic replenishment of VEGF mitigates SCA1 pathogenesis, suggesting a novel therapeutic strategy for this incurable disease.Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, dominantly inherited neurodegenerative disease caused by expansion of a glutamine repeat tract in ataxin-1 (ATXN1). Although the precise function of ATXN1 remains elusive, it seems to be involved in transcriptional repression. We find that mutant ATXN1 represses transcription of the neurotrophic and angiogenic factor vascular endothelial growth factor (VEGF). Genetic overexpression or pharmacologic infusion of recombinant VEGF mitigates SCA1 pathogenesis, suggesting a new therapeutic strategy for this disease.


EMBO Reports | 2007

The role of LANP and ataxin 1 in E4F-mediated transcriptional repression

Marija Cvetanovic; Robert J. Rooney; Jesus J. Garcia; Nataliya Toporovskaya; Huda Y. Zoghbi; Puneet Opal

The leucine‐rich acidic nuclear protein (LANP) belongs to the INHAT family of corepressors that inhibits histone acetyltransferases. The mechanism by which LANP restricts its repression to specific genes is unknown. Here, we report that LANP forms a complex with transcriptional repressor E4F and modulates its activity. As LANP interacts with ataxin 1—a protein mutated in the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1)—we tested whether ataxin 1 can alter the E4F–LANP interaction. We show that ataxin 1 relieves the transcriptional repression induced by the LANP–E4F complex by competing with E4F for LANP. These results provide the first functional link, to our knowledge, between LANP and ataxin 1, and indicate a potential mechanism for the transcriptional aberrations observed in SCA1.


Journal of Biological Chemistry | 2009

Neuronal Differentiation Is Regulated by Leucine-rich Acidic Nuclear Protein (LANP), a Member of the Inhibitor of Histone Acetyltransferase Complex

Rupinder K. Kular; Marija Cvetanovic; Steve Siferd; Ameet R. Kini; Puneet Opal

Neuronal differentiation is a tightly regulated process characterized by temporal and spatial alterations in gene expression. A number of studies indicate a significant role for histone acetylation in the regulation of genes involved in development. Histone acetylation is regulated by histone deacetylases and histone acetyltransferases. Recent findings suggest that these catalytic activities, in turn, are modulated by yet another set of regulators. Of considerable interest in this context is the possible role of the INHAT (inhibitor of histone acetyltransferase) complex, comprised of a group of acidic proteins that suppress histone acetylation by a novel “histone-masking” mechanism. In this study, we specifically examined the role of the leucine-rich acidic nuclear protein (LANP), a defining member of the INHAT complex whose expression is tightly regulated in neuronal development. We report that depleting LANP in neuronal cell lines promotes neurite outgrowth by inducing changes in gene expression. In addition, we show that LANP directly regulates expression of the neurofilament light chain, an important neuron-specific cytoskeletal gene, by binding to the promoter of this gene and modulating histone acetylation levels. Finally, we corroborated our findings in vivo by demonstrating increased neurite outgrowth in primary neurons obtained from LANP null mice, which is also accompanied by increased histone acetylation at the NF-L promoter. Taken together, these results implicate INHATs as a distinct class of developmental regulators involved in the epigenetic modulation of neuronal differentiation.


Autoimmunity | 2007

The affirmative response of the innate immune system to apoptotic cells

Vimal A. Patel; Angelika Longacre-Antoni; Marija Cvetanovic; Daniel J. Lee; Lanfei Feng; Hanli Fan; Joyce Rauch; David S. Ucker; Jerrold S. Levine

Growing evidence exists for a new role for apoptotic cell recognition and clearance in immune homeostasis. Apoptotic cells at all stages, irrespective of membrane integrity, elicit a signature set of signaling events in responding phagocytes, both professional and non-professional. These signaling events are initiated by receptor-mediated recognition of apoptotic determinants, independently of species, cell type, or apoptotic stimulus. We propose that the ability of phagocytes to respond to apoptotic targets with a characteristic set of signaling events comprises a second distinct dimension of innate immunity, as opposed to the traditional innate discrimination of self vs. non-self. We further propose that a loss or abnormality of the signaling events elicited by apoptotic cells, as distinct from the actual clearance of those cells, may predispose to autoimmunity.


Human Molecular Genetics | 2014

The histone deacetylase HDAC3 is essential for Purkinje cell function, potentially complicating the use of HDAC inhibitors in SCA1

Anand Venkatraman; Yuan Shih Hu; Alessandro Didonna; Marija Cvetanovic; Aleksandar Krbanjevic; Patrice Bilesimo; Puneet Opal

Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1(154Q/2Q)), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.


Neuroscience | 2015

Early activation of microglia and astrocytes in mouse models of Spinocerebellar Ataxia Type 1

Marija Cvetanovic; Melissa Ingram; Harry T. Orr; Puneet Opal

Spinocerebellar ataxia type 1 (SCA1) is an incurable, dominantly inherited neurodegenerative disease of the cerebellum caused by a polyglutamine-repeat expansion in the protein ataxin-1 (ATXN1). While analysis of human autopsy material indicates significant glial pathology in SCA1, previous research has focused on characterizing neuronal dysfunction. In this study, we characterized astrocytic and microglial response in SCA1 using a comprehensive array of mouse models. We have discovered that astrocytes and microglia are activated very early in SCA1 pathogenesis even when mutant ATXN1 expression was limited to Purkinje neurons. Glial activation occurred in the absence of neuronal death, suggesting that glial activation results from signals emanating from dysfunctional neurons. Finally, in all different models examined glial activation closely correlated with disease progression, supporting the development of glial-based biomarkers to follow disease progression.


Neurobiology of Disease | 2012

LANP mediates neuritic pathology in Spinocerebellar ataxia type 1.

Marija Cvetanovic; Rupinder K. Kular; Puneet Opal

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease that results from a pathogenic glutamine-repeat expansion in the protein ataxin-1 (ATXN1). Although the functions of ATXN1 are still largely unknown, there is evidence to suggest that ATXN1 plays a role in regulating gene expression, the earliest process known to go awry in SCA1 mouse models. In this study, we show that ATXN1 reduces histone acetylation, a post-translational modification of histones associated with enhanced transcription, and represses histone acetyl transferase-mediated transcription. In addition, we find that depleting the Leucine-rich Acidic Nuclear Protein (LANP)-an ATXN1 binding inhibitor of histone acetylation-reverses aspects of SCA1 neuritic pathology.

Collaboration


Dive into the Marija Cvetanovic's collaboration.

Top Co-Authors

Avatar

Puneet Opal

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

David S. Ucker

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerrold S. Levine

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Vimal A. Patel

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin E. Mitchell

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Wenhui Qu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Ameet R. Kini

Loyola University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge