Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marija Heffer is active.

Publication


Featured researches published by Marija Heffer.


Cell | 2012

Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex

Kenneth Y. Kwan; Mandy M. S. Lam; Matthew B. Johnson; Umber Dube; Sungbo Shim; Mladen-Roko Rasin; André M.M. Sousa; Sofia Fertuzinhos; Jie Guang Chen; Jon I. Arellano; Daniel W. Chan; Mihovil Pletikos; Lana Vasung; David H. Rowitch; Eric J. Huang; Michael L. Schwartz; Rob Willemsen; Ben A. Oostra; Pasko Rakic; Marija Heffer; Ivica Kostović; Miloš Judaš; Nenad Sestan

Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Brocas area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.


PLOS ONE | 2013

Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System

Katarina Vajn; Barbara Viljetić; Ivan Večeslav Degmečić; Ronald L. Schnaar; Marija Heffer

Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies.


Anesthesia & Analgesia | 2013

Expression of calcium/calmodulin-dependent protein kinase II and pain-related behavior in rat models of type 1 and type 2 diabetes

Lejla Ferhatovic; Adriana Banozic; Sandra Kostic; Tina Tičinović Kurir; Anela Novak; Luka Vrdoljak; Marija Heffer; Damir Sapunar; Livia Puljak

BACKGROUND:Abnormalities in peripheral nerves and dorsal root ganglia are noticed in the early stage of experimentally provoked diabetic neuropathy. Enzyme calcium/calmodulin-dependent protein kinase II (CaMKII) may have a modulating role in diabetic neuropathy because of its role in calcium homeostasis. METHODS:A model of type 1 diabetes mellitus (DM1) was induced with 55 mg/kg of the streptozotocin and for DM2 induction a combination of high-fat diet and low-dose streptozotocin (35 mg/kg) was used. Pain-related behavior was analyzed using thermal and mechanical stimuli. Two weeks and 2 months after induction of diabetes rats were euthanized, and the expression of CaMKII and its isoforms in the dorsal root ganglia were analyzed using immunofluorescence. RESULTS:Both types of diabetes were successfully induced, as confirmed by hyperglycemia. Increased pain-related behavior became evident in DM1 rats in 2 weeks after diabetes induction, but not in DM2 rats. The expression of total CaMKII and the phosphorylated &agr; isoform of CaMKII increased in DM1 animals concurrently with pain-related behavior. Expression of &agr;, &bgr;, &ggr;, and &dgr; isoforms in DM1 animals and expression of total CaMKII and all of its analyzed isoforms in DM2 animals remained unchanged. CONCLUSIONS:Our findings may indicate involvement of CaMKII in transmission of nociceptive input early in DM1, but not in DM2. CaMKII may be a suitable pharmacological target for diabetic neuropathy.


Carbohydrate Research | 2013

Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis

Kristina Mlinac; Dragana Fabris; Željka Vukelić; Marko Rožman; Marija Heffer; Svjetlana Kalanj Bognar

Gangliosides are sialylated membrane glycosphingolipids especially abundant in mammalian brain tissue. Sialic acid O-acetylation is one of the most common structural modifications of gangliosides which considerably influences their chemical properties. In this study, gangliosides extracted from brain tissue of mice with altered ganglioside biosynthesis (St8sia1 null and B4galnt1 null mice) were structurally characterized and their acetylation pattern was analyzed. Extracted native and alkali-treated gangliosides were resolved by high performance thin layer chromatography. Ganglioside mixtures as well as separated individual ganglioside fractions were further analyzed by tandem mass spectrometry. Several O-acetylated brain ganglioside species were found in knockout mice, not present in the wild-type mice. To the best of our knowledge this is the first report on the presence of O-acetylated GD1a in St8sia1 null mice and O-acetylated GM3 species in B4galnt1 null mice. In addition, much higher diversity of abnormally accumulated brain ganglioside species regarding the structure of ceramide portion was observed in knockout versus wild-type mice. Obtained findings indicate that the diversity of brain ganglioside structures as well as acetylation patterns in mice with altered ganglioside biosynthesis, is even higher than previously reported. Further investigation is needed in order to explore the effects of acetylation on ganglioside interactions with other molecules and consequently the physiological role of acetylated ganglioside species.


Croatian Medical Journal | 2014

Impact of ovariectomy, high fat diet, and lifestyle modifications on oxidative/antioxidative status in the rat liver

Rosemary Vuković; Senka Blažetić; Ivana Oršolić; Marija Heffer; Sandor G. Vari; Martin Gajdoš; Zora Krivošíková; Patrícia Kramárová; Anton Kebis; Elizabeta Has-Schön

Aim To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. Methods The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. Results High fat diet significantly increased TBARS content in the liver compared to standard diet (P = 0.032, P = 0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P < 0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P = 0.026, P = 0.009), while in ovariectomized group CAT activity was increased (P = 0.018) in rats that received cereal selenized onion biscuits. Conclusion Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status.


Apoptosis | 2014

Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types

András Balogh; Mária Németh; Ibolya Koloszár; Lajos Markó; Lukasz Przybyl; Kazushi Jinno; Csilla Szigeti; Marija Heffer; Matthias Gebhardt; József Szeberényi; Dominik N. Müller; György Sétáló; Marianna Pap

Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala–S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.


Croatian Medical Journal | 2014

Single acute stress-induced progesterone and ovariectomy alter cardiomyocyte contractile function in female rats

Judit Kalász; Enikő Tóth; Beáta Bódi; Miklós Fagyas; Attila Tóth; Bhattoa Harjit Pal; Sandor G. Vari; Marta Balog; Senka Blažetić; Marija Heffer; Zoltán Papp; Attila Borbély

Aim To assess how ovarian-derived sex hormones (in particular progesterone) modify the effects of single acute stress on the mechanical and biochemical properties of left ventricular cardiomyocytes in the rat. Methods Non-ovariectomized (control, n = 8) and ovariectomized (OVX, n = 8) female rats were kept under normal conditions or were exposed to stress (control-S, n = 8 and OVX-S, n = 8). Serum progesterone levels were measured using a chemiluminescent immunoassay. Left ventricular myocardial samples were used for isometric force measurements and protein analysis. Ca2+-dependent active force (Factive), Ca2+-independent passive force (Fpassive), and Ca2+-sensitivity of force production were determined in single, mechanically isolated, permeabilized cardiomyocytes. Stress- and ovariectomy-induced alterations in myofilament proteins (myosin-binding protein C [MyBP-C], troponin I [TnI], and titin) were analyzed by sodium dodecyl sulfate gel electrophoresis using protein and phosphoprotein stainings. Results Serum progesterone levels were significantly increased in stressed rats (control-S, 35.6 ± 4.8 ng/mL and OVX-S, 21.9 ± 4.0 ng/mL) compared to control (10 ± 2.9 ng/mL) and OVX (2.8 ± 0.5 ng/mL) groups. Factive was higher in the OVX groups (OVX, 25.9 ± 3.4 kN/m2 and OVX-S, 26.3 ± 3.0 kN/m2) than in control groups (control, 16.4 ± 1.2 kN/m2 and control-S, 14.4 ± 0.9 kN/m2). Regarding the potential molecular mechanisms, Factive correlated with MyBP-C phosphorylation, while myofilament Ca2+-sensitivity inversely correlated with serum progesterone levels when the mean values were plotted for all animal groups. Fpassive was unaffected by any treatment. Conclusion Stress increases ovary-independent synthesis and release of progesterone, which may regulate Ca2+-sensitivity of force production in left ventricular cardiomyocytes. Stress and female hormones differently alter Ca2+-dependent cardiomyocyte contractile force production, which may have pathophysiological importance during stress conditions affecting postmenopausal women.


Biochimica et Biophysica Acta | 2012

Distribution of mono-, di- and trisialo gangliosides in the brain of Actinopterygian fishes.

Barbara Viljetić; Irena Labak; Senka Majić; Anamaria Štambuk; Marija Heffer

BACKGROUND Mono-, di- and trisialo gangliosides are major glycosphingolipids in the brain of higher vertebrates involved in lipid raft assembly. In contrast, the fish brain is abundant in polisialo-gangliosides, whose function is implicated in the modulation of repulsive and attractive intercellular interactions during embryonic development and a temperature adaptation process. The histological distribution of gangliosides is usually studied in rodent and mammalian brains, but to date it has not been described in the case of fish brain. METHODS Gangliosides were extracted from adult brains of trout, carp and zebrafish and separated by TLC. High-affinity anti-ganglioside (GM1, GD1a, GD1b, GT1b) IgG antibodies were used for immunohistochemistry. RESULTS In trout and carp brains GM1 and GT1b are expressed in the same neuronal cell bodies from the telencephalon to the spinal cord. In zebrafish brain GM1 was not detected, whereas GT1b is a general neuropil staining. GD1a is specific for unmyelinated parallel fibers in carp and zebrafish brains as well as parallel fibers in the molecular layer of all cerebellar divisions. In trout brain GD1b is found in parallel fibers of the cerebellum, but not in the tectum mesencephali. GD1b is expressed in zebrafish neuronal cell bodies. CONCLUSIONS Each studied species has a different expression of complex gangliosides. GT1b is widely present, whereas GD1a and GD1b appear in a specific group of unmyelinated fibers and could be used as their specific marker. GENERAL SIGNIFICANCE This is the first report on mono-, di- and trisialo ganglioside (GM1, GD1a, GD1b and GT1b) distribution in the brain of adult Actinopterygian fishes. This article is part of a Special Issue entitled Glycoproteomics.


Journal of Molecular Neuroscience | 2012

Neuroplastin Expression in the Hippocampus of Mice Lacking Complex Gangliosides

Kristina Mlinac; Nataša Jovanov Milošević; Marija Heffer; Karl Heinz Smalla; Ronald L. Schnaar; Svjetlana Kalanj Bognar

We report changes in neuroplastin gene and protein expression in the hippocampus of B4galnt1 null mice, which lacks complex ganglioside structures, compared with that of wild-type mice. Neuroplastin mRNA expression was significantly higher in the hippocampi of B4galnt1 null mice than in wild-type mice. Moreover, Western blot analysis shows increased neuroplastin protein levels of neuroplastin-55 isoform in B4galnt1 null hippocampal homogenates. Immunohistochemistry revealed a substantially different distribution of neuroplastin immunoreactivity in sagittal sections of the hippocampi derived from B4galnt1 null in comparison with those from wild-type mice. Most strikingly, B4galnt1 null mice had relatively little neuroplastin immunoreactivity in the pyramidal layer of CA1 and CA3, whereas wild-type mice had strong neuroplastin staining of pyramidal cells. Results of this study support the hypothesis that alterations of brain ganglioside expression influence the expression of neuroplastin. As both neuroplastin and gangliosides have important roles in synaptic transmission, synaptic plasticity, and neurite outgrowth, it will be of particular interest to unravel the molecular mechanisms underlying the relationship between ganglioside composition and neuroplastin transcript and protein expression in the mammalian nervous system.


Croatian Medical Journal | 2015

Sex-specific chronic stress response at the level of adrenal gland modified sexual hormone and leptin receptors

Marta Balog; Milan Miljanović; Senka Blažetić; Irena Labak; Vedrana Ivić; Barbara Viljetić; Attila Borbély; Zoltán Papp; Robert Blažeković; Sandor G. Vari; Miklós Fagyas; Marija Heffer

Aim To compare cardiometabolic risk-related biochemical markers and sexual hormone and leptin receptors in the adrenal gland of rat males, non-ovariectomized females (NON-OVX), and ovariectomized females (OVX) under chronic stress. Methods Forty six 16-week-old Sprague-Dawley rats were divided into male, NON-OVX, and OVX group and exposed to chronic stress or kept as controls. Weight, glucose tolerance test (GTT), serum concentration of glucose, and cholesterol were measured. Adrenal glands were collected at the age of 28 weeks and immunohistochemical staining against estrogen beta (ERβ), progesterone (PR), testosterone (AR), and leptin (Ob-R) receptors was performed. Results Body weight, GTT, serum cholesterol, and glucose changed in response to stress as expected and validated the applied stress protocol. Stressed males had significantly higher number of ERβ receptors in comparison to control group (P = 0.028). Stressed NON-OVX group had significantly decreased AR in comparison to control group (P = 0.007). The levels of PR did not change in any consistent pattern. The levels of Ob-R increased upon stress in all groups, but the significant difference was reached only in the case of stressed OVX group compared to control (P = 0.033). Conclusion Chronic stress response was sex specific. OVX females had similar biochemical parameters as males. Changes upon chronic stress in adrenal gland were related to a decrease in testosterone receptor in females and increase in estrogen receptor in males.

Collaboration


Dive into the Marija Heffer's collaboration.

Top Co-Authors

Avatar

Irena Labak

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar

Marta Balog

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Viljetić

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar

Senka Blažetić

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosemary Vuković

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar

Sandor G. Vari

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vedrana Ivić

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Researchain Logo
Decentralizing Knowledge