Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marika M. Holland is active.

Publication


Featured researches published by Marika M. Holland.


Journal of Climate | 2004

The Community Climate System Model Version 4

Peter R. Gent; Gokhan Danabasoglu; Leo J. Donner; Marika M. Holland; Elizabeth C. Hunke; Steven R. Jayne; David M. Lawrence; Richard Neale; Philip J. Rasch; Mariana Vertenstein; Patrick H. Worley; Zong-Liang Yang; Minghua Zhang

AbstractThe fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...


Science | 2007

Perspectives on the Arctic's Shrinking Sea-Ice Cover

Mark C. Serreze; Marika M. Holland; Julienne Stroeve

Linear trends in arctic sea-ice extent over the period 1979 to 2006 are negative in every month. This ice loss is best viewed as a combination of strong natural variability in the coupled ice-ocean-atmosphere system and a growing radiative forcing associated with rising concentrations of atmospheric greenhouse gases, the latter supported by evidence of qualitative consistency between observed trends and those simulated by climate models over the same period. Although the large scatter between individual model simulations leads to much uncertainty as to when a seasonally ice-free Arctic Ocean might be realized, this transition to a new arctic state may be rapid once the ice thins to a more vulnerable state. Loss of the ice cover is expected to affect the Arctics freshwater system and surface energy budget and could be manifested in middle latitudes as altered patterns of atmospheric circulation and precipitation.


Climatic Change | 2012

The Arctic's rapidly shrinking sea ice cover: A research synthesis

Julienne Stroeve; Mark C. Serreze; Marika M. Holland; Jennifer E. Kay; James Malanik; Andrew P. Barrett

The sequence of extreme September sea ice extent minima over the past decade suggests acceleration in the response of the Arctic sea ice cover to external forcing, hastening the ongoing transition towards a seasonally open Arctic Ocean. This reflects several mutually supporting processes. Because of the extensive open water in recent Septembers, ice cover in the following spring is increasingly dominated by thin, first-year ice (ice formed during the previous autumn and winter) that is vulnerable to melting out in summer. Thinner ice in spring in turn fosters a stronger summer ice-albedo feedback through earlier formation of open water areas. A thin ice cover is also more vulnerable to strong summer retreat under anomalous atmospheric forcing. Finally, general warming of the Arctic has reduced the likelihood of cold years that could bring about temporary recovery of the ice cover. Events leading to the September ice extent minima of recent years exemplify these processes.


Bulletin of the American Meteorological Society | 2013

The Community Earth System Model: A Framework for Collaborative Research

James W. Hurrell; Marika M. Holland; Peter R. Gent; Steven J. Ghan; Jennifer E. Kay; Paul J. Kushner; Jean-Francois Lamarque; William G. Large; David M. Lawrence; Keith Lindsay; William H. Lipscomb; Matthew C. Long; Natalie M. Mahowald; Daniel R. Marsh; Richard Neale; Philip J. Rasch; Steven J. Vavrus; Mariana Vertenstein; David C. Bader; William D. Collins; James J. Hack; Jeffrey T. Kiehl; Shawn J. Marshall

The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad com...


Atmosphere-ocean | 2001

The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates

Andrew J. Weaver; Michael Eby; Edward C. Wiebe; Cecilia M. Bitz; Phil. Duffy; Tracy L. Ewen; Augustus F. Fanning; Marika M. Holland; Amy MacFadyen; H. Damon Matthews; K. J. Meissner; Oleg A. Saenko; Andreas Schmittner; Huaxiao Wang; Masakazu Yoshimori

Abstract A new earth system climate model of intermediate complexity has been developed and its climatology compared to observations. The UVic Earth System Climate Model consists of a three‐dimensional ocean general circulation model coupled to a thermodynamic/dynamic sea‐ice model, an energy‐moisture balance atmospheric model with dynamical feedbacks, and a thermomechanical land‐ice model. In order to keep the model computationally efficient a reduced complexity atmosphere model is used. Atmospheric heat and freshwater transports are parametrized through Fickian diffusion, and precipitation is assumed to occur when the relative humidity is greater than 85%. Moisture transport can also be accomplished through advection if desired. Precipitation over land is assumed to return instantaneously to the ocean via one of 33 observed river drainage basins. Ice and snow albedo feedbacks are included in the coupled model by locally increasing the prescribed latitudinal profile of the planetary albedo. The atmospheric model includes a parametrization of water vapour/planetary longwave feedbacks, although the radiative forcing associated with changes in atmospheric CO2 is prescribed as a modification of the planetary longwave radiative flux. A specified lapse rate is used to reduce the surface temperature over land where there is topography. The model uses prescribed present‐day winds in its climatology, although a dynamical wind feedback is included which exploits a latitudinally‐varying empirical relationship between atmospheric surface temperature and density. The ocean component of the coupled model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model 2.2, with a global resolution of 3.6° (zonal) by 1.8° (meridional) and 19 vertical levels, and includes an option for brine‐rejection parametrization. The sea‐ice component incorporates an elastic‐viscous‐plastic rheology to represent sea‐ice dynamics and various options for the representation of sea‐ice thermodynamics and thickness distribution. The systematic comparison of the coupled model with observations reveals good agreement, especially when moisture transport is accomplished through advection. Global warming simulations conducted using the model to explore the role of moisture advection reveal a climate sensitivity of 3.0°C for a doubling of CO2, in line with other more comprehensive coupled models. Moisture advection, together with the wind feedback, leads to a transient simulation in which the meridional overturning in the North Atlantic initially weakens, but is eventually re‐established to its initial strength once the radiative forcing is held fixed, as found in many coupled atmosphere General Circulation Models (GCMs). This is in contrast to experiments in which moisture transport is accomplished through diffusion whereby the overturning is reestablished to a strength that is greater than its initial condition. When applied to the climate of the Last Glacial Maximum (LGM), the model obtains tropical cooling (30°N‐30°S), relative to the present, of about 2.1°C over the ocean and 3.6°C over the land. These are generally cooler than CLIMAP estimates, but not as cool as some other reconstructions. This moderate cooling is consistent with alkenone reconstructions and a low to medium climate sensitivity to perturbations in radiative forcing. An amplification of the cooling occurs in the North Atlantic due to the weakening of North Atlantic Deep Water formation. Concurrent with this weakening is a shallowing of, and a more northward penetration of, Antarctic Bottom Water. Climate models are usually evaluated by spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. Implicit in this approach is the assumption that the present‐day observations are in equilibrium with the present‐day radiative forcing. The comparison of a long transient integration (starting at 6 KBP), forced by changing radiative forcing (solar, CO2, orbital), with an equilibrium integration reveals substantial differences. Relative to the climatology from the present‐day equilibrium integration, the global mean surface air and sea surface temperatures (SSTs) are 0.74°C and 0.55°C colder, respectively. Deep ocean temperatures are substantially cooler and southern hemisphere sea‐ice cover is 22% greater, although the North Atlantic conveyor remains remarkably stable in all cases. The differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene. It is also demonstrated that a global warming simulation that starts from an equilibrium present‐day climate (cold start) underestimates the global temperature increase at 2100 by 13% when compared to a transient simulation, under historical solar, CO2 and orbital forcing, that is also extended out to 2100. This is larger (13% compared to 9.8%) than the difference from an analogous transient experiment which does not include historical changes in solar forcing. These results suggest that those groups that do not account for solar forcing changes over the twentieth century may slightly underestimate (∼3% in our model) the projected warming by the year 2100.


Geophysical Research Letters | 2006

Future abrupt reductions in the summer Arctic sea ice

Marika M. Holland; Cecilia M. Bitz; Bruno Tremblay

[1] We examine the trajectory of Arctic summer sea ice in seven projections from the Community Climate System Model and find that abrupt reductions are a common feature of these 21st century simulations. These events have decreasing September ice extent trends that are typically 4 times larger than comparable observed trends. One event exhibits a decrease from 6 million km 2 to 2 million km 2 in a decade, reaching near ice-free September conditions by 2040. In the simulations, ice retreat accelerates as thinning increases the open water formation efficiency for a given melt rate and the ice-albedo feedback increases shortwave absorption. The retreat is abrupt when ocean heat transport to the Arctic is rapidly increasing. Analysis from multiple climate models and three forcing scenarios indicates that abrupt reductions occur in simulations from over 50% of the models and suggests that reductions in future greenhouse gas emissions moderate the likelihood of these events. Citation: Holland, M. M., C. M. Bitz, and B. Tremblay (2006), Future abrupt reductions in the summer Arctic sea ice, Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024.


Bulletin of the American Meteorological Society | 2015

The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability

Jennifer E. Kay; Clara Deser; Adam S. Phillips; A Mai; Cecile Hannay; Gary Strand; Julie M. Arblaster; Susan C. Bates; Gokhan Danabasoglu; James Edwards; Marika M. Holland; Paul J. Kushner; Jean-Francois Lamarque; David M. Lawrence; Keith Lindsay; A Middleton; Ernesto Munoz; Richard Neale; Keith W. Oleson; Lorenzo M. Polvani; Mariana Vertenstein

AbstractWhile internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindu...


Eos, Transactions American Geophysical Union | 2008

Arctic Sea Ice Extent Plummets in 2007

Julienne Stroeve; Mark C. Serreze; Sheldon D. Drobot; Shari Gearheard; Marika M. Holland; James A. Maslanik; Walter N. Meier; Theodore A. Scambos

Arctic sea ice declined rapidly to unprecedented low extents in the summer of 2007, raising concern that the Arctic may be on the verge of a fundamental transition toward a seasonal ice cover. Arctic sea ice extent typically attains a seasonal maximum in March and minimum in September. Over the course of the modern satellite record (1979 to present), sea ice extent has declined significantly in all months, with the decline being most pronounced in September. By mid-July 2007, it was clear that a new record low would be set during the summer of 2007.


Journal of Geophysical Research | 2001

Simulating the ice-thickness distribution in a coupled climate model

Cecilia M. Bitz; Marika M. Holland; Andrew J. Weaver; Michael Eby

Climate simulations in a global coupled model are investigated using a dynamic-thermodynamic sea ice and snow model with sophisticated thermodynamics and a subgrid scale parameterization for multiple ice thicknesses. In addition to the sea ice component, the model includes a full primitive-equation ocean and a simple energy-moisture balance atmosphere. We introduce a formulation of the ice thickness distribution that is Lagrangian in thickness-space. The method is designed to use fewer thickness categories because it adjusts to place resolution where it is needed most and it is free of diffusive effects that tend to smooth Eulerian distributions. Experiments demonstrate that the model does reasonably well in simulating the mean Arctic climate. We find the climate of the Arctic and northern North Atlantic is sensitive to resolving the ice-thickness distribution when comparing the model results to a simulation with a two-level sea ice model. The ice-thickness distribution causes ice export through Fram Strait to be more variable and more strongly linked to meridional overturning in the North Atlantic Ocean. The Lagrangian formulation of the ice-thickness distribution allows for the inclusion of a vertical temperature profile with relative ease compared to an Eulerian method. We find ice growth rates and ocean surface salinity differ in our model with a well-resolved vertical temperature profile in the ice and snow and an explicit brine-pocket parameterization compared to a simulation with Semtner zero-layer thermodynamics. Although these differences are important for the climate of the Arctic, the effects of an ice thickness distribution are more dramatic and extend into the northern North Atlantic. Sensitivity experiments indicate that five ice-thickness categories with ∼50-cm vertical temperature resolution capture the effects of the ice-thickness distribution on the heat and freshwater exchange across the surface in the presence of sea ice in these simulations.


Ecological Monographs | 2009

Predicting 21st‐century polar bear habitat distribution from global climate models

George M. Durner; David C. Douglas; Ryan M. Nielson; Steven C. Amstrup; Trent L. McDonald; Ian Stirling; Mette Mauritzen; Erik W. Born; Øystein Wiig; Eric T. DeWeaver; Mark C. Serreze; Stanislav Belikov; Marika M. Holland; James A. Maslanik; Jon Aars; David A. Bailey; Andrew E. Derocher

Projections of polar bear (Ursus maritimus) sea ice habitat distribution in the polar basin during the 21st century were developed to understand the consequences of anticipated sea ice reductions on polar bear populations. We used location data from satellite- collared polar bears and environmental data (e.g., bathymetry, distance to coastlines, and sea ice) collected from 1985 to 1995 to build resource selection functions (RSFs). RSFs described habitats that polar bears preferred in summer, autumn, winter, and spring. When applied to independent data from 1996 to 2006, the RSFs consistently identified habitats most frequently used by polar bears. We applied the RSFs to monthly maps of 21st-century sea ice concentration projected by 10 general circulation models (GCMs) used in the Intergovern- mental Panel of Climate Change Fourth Assessment Report, under the A1B greenhouse gas forcing scenario. Despite variation in their projections, all GCMs indicated habitat losses in the polar basin during the 21st century. Losses in the highest-valued RSF habitat (optimal habitat) were greatest in the southern seas of the polar basin, especially the Chukchi and Barents seas, and least along the Arctic Ocean shores of Banks Island to northern Greenland. Mean loss of optimal polar bear habitat was greatest during summer; from an observed 1.0 million km 2 in 1985-1995 (baseline) to a projected multi-model mean of 0.32 million km 2 in 2090-2099 (� 68% change). Projected winter losses of polar bear habitat were less: from 1.7 million km 2 in 1985-1995 to 1.4 million km 2 in 2090-2099 (� 17% change). Habitat losses based on GCM multi-model means may be conservative; simulated rates of habitat loss during 1985-2006 from many GCMs were less than the actual observed rates of loss. Although a reduction in the total amount of optimal habitat will likely reduce polar bear populations, exact relationships between habitat losses and population demographics remain unknown. Density and energetic effects may become important as polar bears make long-distance annual migrations from traditional winter ranges to remnant high-latitude summer sea ice. These impacts will likely affect specific sex and age groups differently and may ultimately preclude bears from seasonally returning to their traditional ranges.

Collaboration


Dive into the Marika M. Holland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark C. Serreze

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Bailey

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Elizabeth C. Hunke

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer E. Kay

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Laura Landrum

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Joel Finnis

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Cassano

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge