Marika Mannerström
University of Tampere
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marika Mannerström.
Journal of Ocular Pharmacology and Therapeutics | 2002
Anne Huhtala; Marika Mannerström; Päivi Alajuuma; Sami Nurmi; Tarja Toimela; Hanna Tähti; Lotta Salminen; Hannu Uusitalo
The cytotoxicity of benzalkonium chloride (BAC) and disodium edetate (EDTA) was evaluated in vitro in rabbit corneal epithelial primary cells and in the immortalized human corneal epithelial cell line SV40. Cell injury was assessed by lactate dehydrogenase (LDH) leakage and by reduction of the tetrazolium salt WST-1 to formazan by mitochondrial metabolic activity. Cell cultures were exposed to test compounds both in serum-free and in serum-containing medium. Although WST-1 and LDH tests measured different physiological endpoints, they yielded comparable results. However, the LDH test seemed less reliable due to great variation. The use of serum was found to result in lower toxicity of the compounds in both tests. The rabbit primary cell culture and the human corneal cell line were quite similar in their responses to BAC and EDTA. The human cell line is a promising in vitro alternative in oculotoxicity testing.
Toxicology in Vitro | 2002
Marika Mannerström; Michaela Zorn-Kruppa; Horst A. Diehl; Maria Engelke; Tarja Toimela; H Mäenpää; Anne Huhtala; Hannu Uusitalo; Lotta Salminen; Periklis Pappas; Marios Marselos; M Mäntylä; E Mäntylä; Hanna Tähti
The cytotoxicity of the selected systemic and intravitreally dosed drugs tamoxifen, toremifene, chloroquine, 5-fluorouracil, gentamicin and ganciclovir was studied in retinal pigment epithelium (RPE) in vitro. The cytotoxicity was assayed in the human RPE cell line D407 and the pig RPE cell culture using the WST-1 test, which is an assay of cell proliferation and viability. The effects of experimental conditions on the WST-1 test (cell density, serum content in the culture medium, the exposure time) were evaluated. The EC50 values in tamoxifen-treated D407 cells ranged between 6.7 and 8.9 micromol/l, and in pig RPE cells between 10.1 and 12.2 micromol/l, depending on the cell density used. The corresponding values for toremifene were 7.4 to 11.1 micromol/l in D407 cells and 10.0 to 11.6 micromol/l in pig RPE cells. In chloroquine-treated cells, the EC50 values were 110.0 micromol/l for D407 cells and 58.4 micromol/l for pig RPE cells. Gentamicin and ganciclovir did not show any toxicity in micromolar concentrations. The exposure time was a significant factor, especially when the drug did not induce cell death, but was antiproliferative (5-fluorouracil). Serum protected the cells from the toxic effects of the drugs. Both cell cultures were most sensitive to tamoxifen and toremifene, and next to chloroquine. The drug toxicities obtained in the present study were quite similar in both cell types; that is, the pig RPE cells and the human D 407 cell line, despite the differences in, for example, the growth rate and melanin contents of the cell types. Owing to the homeostatic functions important for the whole neuroretina, RPE is an interesting in vitro model for the evaluation of retinal toxicity, but, in addition to the WST-1 test, more specific tests and markers based on the homeostatic functions of the RPE are needed.
Nanotoxicology | 2016
Olesja Bondarenko; Margit Heinlaan; Mariliis Sihtmäe; Angela Ivask; Imbi Kurvet; Elise Joonas; Anita Jemec; Marika Mannerström; Tuula Heinonen; Rohit Rekulapelly; Shashi Singh; Jing Zou; Ilmari Pyykkö; Damjana Drobne; Anne Kahru
Abstract Within EU FP7 project NANOVALID, the (eco)toxicity of 7 well-characterized engineered nanomaterials (NMs) was evaluated by 15 bioassays in 4 laboratories. The highest tested nominal concentration of NMs was 100 mg/l. The panel of the bioassays yielded the following toxicity order: Ag > ZnO > CuO > TiO2 > MWCNTs > SiO2 > Au. Ag, ZnO and CuO proved very toxic in the majority of assays, assumingly due to dissolution. The latter was supported by the parallel analysis of the toxicity of respective soluble metal salts. The most sensitive tests/species were Daphnia magna (towards Ag NMs, 24-h EC50 = 0.003 mg Ag/l), algae Raphidocelis subcapitata (ZnO and CuO, 72-h EC50 = 0.14 mg Zn/l and 0.7 mg Cu/l, respectively) and murine fibroblasts BALB/3T3 (CuO, 48-h EC50 = 0.7 mg Cu/l). MWCNTs showed toxicity only towards rat alveolar macrophages (EC50 = 15.3 mg/l) assumingly due to high aspect ratio and TiO2 towards R. subcapitata (EC50 = 6.8 mg Ti/l) due to agglomeration of TiO2 and entrapment of algal cells. Finally, we constructed a decision tree to select the bioassays for hazard ranking of NMs. For NM testing, we recommend a multitrophic suite of 4 in vitro (eco)toxicity assays: 48-h D. magna immobilization (OECD202), 72-h R. subcapitata growth inhibition (OECD201), 30-min Vibrio fischeri bioluminescence inhibition (ISO2010) and 48-h murine fibroblast BALB/3T3 neutral red uptake in vitro (OECD129) representing crustaceans, algae, bacteria and mammalian cells, respectively. Notably, our results showed that these assays, standardized for toxicity evaluation of “regular” chemicals, proved efficient also for shortlisting of hazardous NMs. Additional assays are recommended for immunotoxicity evaluation of high aspect ratio NMs (such as MWCNTs).
Journal of Nanobiotechnology | 2014
Jing Zou; Hao Feng; Marika Mannerström; Tuula Heinonen; Ilmari Pyykkö
BackgroundSilver nanoparticles (AgNPs) displayed strong activities in anti-bacterial, anti-viral, and anti-fungal studies and was reportedly efficient in treating otitis media .The potential impact of AgNPs on the inner ear was missing.ObjectiveAttempted to evaluate the potential toxicity of AgNPs in the inner ear, middle ear, and external ear canal after transtympanic injection in rats.ResultsIn in vitro studies, the IC50 for AgNPs in neutral red uptake assay was lower than that in NAD(P)H-dependent cellular oxidoreductase enzyme assay (WST-1) and higher than that in total cellular ATP and nuclear membrane integrity (propidium iodide) assessments. In in vivo experiments, magnetic resonance imaging (MRI) showed that significant changes in the permeability of biological barriers occurred in the middle ear mucosa, the skin of the external ear canal, and the inner ear at 5 h post-transtympanic injection of AgNPs at concentrations ranging from 20 μg/ml to 4000 μg/ml. The alterations in permeability showed a dosage-response relationship, and were reversible. The auditory brainstem response showed that 4000 μg/ml AgNPs induced hearing loss with partial recovery at 7 d, whereas 20 μg/ml caused reversible hearing loss. The functional change in auditory system was in line with the histology results. In general, the BALB/c 3T3 cell line is more than 1000 times more sensitive than the in vivo studies. Impairment of the mitochondrial function was indicated to be the mechanism of toxicity of AgNPs.ConclusionThese results suggest that AgNPs caused significant, dose-dependent changes in the permeability of biological barriers in the middle ear mucosa, the skin of the external ear canal, and the inner ear. In general, the BALB/c 3T3 cell line is more than 1000 times more sensitive than the in vivo studies. The rat ear model might be expended to other engineered nanomaterials in nanotoxicology study.
Frontiers in Pharmacology | 2011
Jertta-Riina Sarkanen; Marika Mannerström; Hanna Vuorenpää; Jukka Uotila; Timo Ylikomi; Tuula Heinonen
The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory pre-validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis, e.g., pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using six reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory pre-validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation), batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability) were tested. The pre-set acceptance criteria for the intra-laboratory pre-validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.
Toxicology in Vitro | 2016
Marika Mannerström; Jing Zou; Tarja Toimela; Ilmari Pyykkö; Tuula Heinonen
Developing new, validated methods for screening of the effects of nanomaterials is a huge and expensive task. It is therefore necessary to try to employ already existing and validated methods, developed for chemicals. In the present study cytotoxicity of gold (Au) and silver (Ag) nanoparticles (NP), two different mesoporous silica nanoparticles (MSNP), and multi-walled carbon nanotubes (MWCNT) were investigated in BALB/c 3T3 fibroblasts, NR8383 macrophages, and U937 monocytes using standard assays, namely WST-1 and NRU. In addition, preliminary attempts were made to investigate ENM-mediated effects on cell motility as a potential end point for NP toxicity. AgNPs were most toxic to BALB/c 3T3 fibroblasts while other ENMs were insignificantly toxic. NR8383 macrophages were most sensitive cells, as in addition to AgNPs, also MWCNTs were toxic to NR8383 cells. AgNP was toxic also to U937 cells, other ENMs had minor effect. Different media resulted in different-sized aggregates of the same ENMs. AgNP inhibited BALB/c motility most, whereas NR8383 motility was inhibited most by MWCNTs. In conclusion, conventional cytotoxicity assays are better suited to rank the order of toxicity of different nanoparticles instead of producing accurate IC50 data. Moreover, using immune cells, especially macrophages together with fibroblasts, would bring more relevant predictions of ENM cytotoxicity as immune cells may discover cytotoxicity that is not captured by BALB/c 3T3 cells alone.
Otology & Neurotology | 2017
Pascal Senn; Marta Roccio; Stefan Hahnewald; Claudia Frick; Monika Kwiatkowska; Masaaki Ishikawa; Péter Bakó; Hao Li; Fredrik Edin; Wei Liu; Helge Rask-Andersen; Ilmari Pyykkö; Jing Zou; Marika Mannerström; H. Keppner; Alexandra Homsy; Edith Laux; Miguel Llera; Jean-Paul Lellouche; Stella Ostrovsky; Ehud Banin; Aharon Gedanken; Nina Perkas; Ute Wank; Karl-Heinz Wiesmueller; Pavel Mistrík; Heval Benav; Carolyn Garnham; Claude Jolly; Filippo Gander
Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.
Neurochemical Research | 2004
Hanna Mäenpää; Tarja Toimela; Marika Mannerström; Pirjo Saransaari; Hanna Tähti
Tamoxifen and toremifene are antiestrogenic drugs successfully used in the therapy of breast cancer. Rheumatoid arthritis and malaria have been treated with chloroquine for decades. Unfortunately, tamoxifen and chloroquine are reported to induce retinal changes as a side effect. We now studied the effects of tamoxifen, toremifene, and chloroquine on the viability of the human retinoblastomal cell line Y79, using the WST-1 test or measurement of the cellular ATP content. The studies were made on Y79 cell cultures and on cocultures of Y79 cells and retinal pigment epithelial cell line ARPE-19. The cocultures were used to clarify the effect of retinal pigment epithelium on toxicity to Y79 cells. In the coculture, the drugs were applied to ARPE-19 cells growing in the culture inserts on top of Y79 cells and the viability of ARPE-19 and Y79 cells was assessed separately. Tamoxifen, toremifene, and chloroquine reduced dose-dependently the viability of Y79 cells after 24-h exposure. The ARPE-19 cells proved to be protective after chloroquine exposure in the coculture. The results shed light on the toxicity of tamoxifen and chloroquine in Y79 cells in vitro. With the coculture we were able to simulate the in vivo route of chloroquine to the retina via the retinal pigment epithelium.
Basic & Clinical Pharmacology & Toxicology | 2017
Marika Mannerström; Tarja Toimela; Jertta-Riina Sarkanen; Tuula Heinonen
The OECD GD 129 BALB/c 3T3 neutral red uptake (NRU) assay is a standardized test method for estimating starting dose for an acute oral systemic toxicity test in rodents. Mouse BALB/c 3T3 fibroblasts are the most commonly used cells in the NRU assay. We have previously transferred and validated BALB/c 3T3 NRU assay in our GLP laboratory. Subsequently, in order to obtain more human‐relevant cytotoxicity data, we performed an intralaboratory validation using human BJ fibroblasts in the NRU assay instead of mouse BALB/c 3T3 fibroblasts. Here, we present comparative cytotoxicity data of 26 different test chemicals (pharmaceuticals, industrial chemicals, pesticides and food additives) produced with both BALB/c 3T3 NRU and BJ NRU assays.
Reproductive Toxicology | 2017
Tarja Toimela; Outi Huttala; E. Sabell; Marika Mannerström; Jertta-Riina Sarkanen; Timo Ylikomi; Tuula Heinonen
Vasculogenesis and angiogenesis are the processes by which new blood vessels are formed. We have developed a serum-free human adipose stromal cell and umbilical cord vein endothelial cell based vasculogenesis/angiogenesis test. In this study, the test was validated in our GLP laboratory following the OECD Guidance Document 34 [1] using erlotinib, acetylic salicylic acid, levamisole, 2-methoxyestradiol, anti-VEGF, methimazole, and D-mannitol to show its reproducibility, repeatability, and predictivity for humans. The results were obtained from immunostained tubule structures and cytotoxicity assessment. The performance of the test was evaluated using 26 suspected teratogens and non-teratogens. The positive predictive value was 71.4% and the negative predictive value was 50.0%, indicating that inhibition of vasculogenesis is a significant mechanism behind teratogenesis. In conclusion, this test has great potential to be a screening test for prioritization purposes of chemicals and to be a test in a battery to predict developmental hazards in a regulatory context.