Marika Schleberger
University of Duisburg-Essen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marika Schleberger.
Physical Review B | 2014
Nils Scheuschner; Oliver Ochedowski; Anne-Marie Kaulitz; Roland Gillen; Marika Schleberger; Janina Maultzsch
We present a photoluminescence study of freestanding and Si/SiO2 supported single- and few-layer MoS2. The single-layer exciton peak (A) is only observed in freestanding MoS2. The photoluminescence of supported single-layer MoS2 is instead originating from the A- (trion) peak as the MoS2 is n-type doped from the substrate. In bilayer MoS2, the van der Waals interaction with the substrate is decreasing the indirect band gap energy by up to ~ 80 meV. Furthermore, the photoluminescence spectra of suspended MoS2 can be influenced by interference effects.
Journal of Physics: Condensed Matter | 2011
F. Aumayr; Stefan Facsko; A.S. El-Said; C. Trautmann; Marika Schleberger
This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.
Applied Physics Letters | 2011
S. Akcöltekin; Hanna Bukowska; Thorsten Peters; O. Osmani; I. Monnet; I. Alzaher; B. Ban d’Etat; H. Lebius; Marika Schleberger
We show that graphene on a dielectric substrate sustains major modifications if irradiated with swift heavy ions under oblique angles. Due to a combination of defect creation in the graphene layer and hillock creation in the substrate, graphene is split and folded along the ion track yielding double layer nanoribbons. The folded parts are up to several 100 nm in length. Our results indicate that the radiation hardness of graphene devices is questionable but also open up a new way of introducing extended low-dimensional defects in a controlled way.
Journal of Applied Physics | 2013
Oliver Ochedowski; Kolyo Marinov; G. Wilbs; Gregor Keller; Nils Scheuschner; Daniel Severin; Markus Bender; Janina Maultzsch; Franz-Josef Tegude; Marika Schleberger
We have investigated the deterioration of field effect transistors based on two-dimensional materials due to irradiation with swift heavy ions. Devices were prepared with exfoliated single layers of MoS2 and graphene, respectively. They were characterized before and after irradiation with 1.14 GeV U28+ ions using three different fluences. By electrical characterization, atomic force microscopy, and Raman spectroscopy, we show that the irradiation leads to significant changes of structural and electrical properties. At the highest fluence of 4 × 1011 ions/cm2, the MoS2 transistor is destroyed, while the graphene based device remains operational, albeit with an inferior performance.
New Journal of Physics | 2008
Ender Akcöltekin; S. Akcöltekin; O. Osmani; Andreas Duvenbeck; H. Lebius; Marika Schleberger
The irradiation of SrTiO3 single crystals with swift heavy ions leads to modifications of the surface. The details of the morphology of these modifications depend strongly on the angle of incidence and can be characterized by atomic force microscopy. At glancing angles, discontinuous chains of nanosized hillocks appear on the surface. From the variation of the length of the chains with the angle of incidence the latent track radius can be determined. This radius is material specific and allows the calculation of the electron–phonon coupling constant for SrTiO3. We show that a theoretical description of the nanodot creation is possible within a two-temperature model if the spatial electron density is taken into account. The appearance of discontinuous features can be explained easily within this model, but it turns out that the electronic excitation dissipates on a femtosecond timescale, too rapidly to feed sufficient energy into the phonon system in order to induce a thermal melting process. We demonstrate that this can be solved if a temperature-dependent diffusion coefficient is introduced into the model.
Beilstein Journal of Nanotechnology | 2014
Oliver Ochedowski; Kolyo Marinov; Nils Scheuschner; A. Poloczek; Benedict Kleine Bussmann; Janina Maultzsch; Marika Schleberger
Summary Thinning out MoS2 crystals to atomically thin layers results in the transition from an indirect to a direct bandgap material. This makes single layer MoS2 an exciting new material for electronic devices. In MoS2 devices it has been observed that the choice of materials, in particular for contact and gate, is crucial for their performance. This makes it very important to study the interaction between ultrathin MoS2 layers and materials employed in electronic devices in order to optimize their performance. In this work we used NC-AFM in combination with quantitative KPFM to study the influence of the substrate material and the processing on single layer MoS2 during device fabrication. We find a strong influence of contaminations caused by the processing on the surface potential of MoS2. It is shown that the charge transfer from the substrate is able to change the work function of MoS2 by about 40 meV. Our findings suggest two things. First, the necessity to properly clean devices after processing as contaminations have a great impact on the surface potential. Second, that by choosing appropriate materials the work function can be modified to reduce contact resistance.
Nanotechnology | 2009
S. Akcöltekin; M El Kharrazi; B Köhler; Axel Lorke; Marika Schleberger
We show that it is possible to prepare and identify ultra-thin sheets of graphene on crystalline substrates such as SrTiO(3), TiO(2), Al(2)O(3) and CaF(2) by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On the substrates under consideration we find a similar distribution of single layer, bilayer and few-layer graphene and graphite flakes as with conventional SiO(2) substrates. The optical contrast C of a single graphene layer on any of those substrates is determined by calculating the optical properties of a two-dimensional metallic sheet on the surface of a dielectric, which yields values between C = -1.5% (G/TiO(2)) and C = -8.8% (G/CaF(2)). This contrast is in reasonable agreement with experimental data and is sufficient to make identification by an optical microscope possible. The graphene layers cover the crystalline substrate in a carpet-like mode and the height of single layer graphene on any of the crystalline substrates as determined by atomic force microscopy is d(SLG) = 0.34 nm and thus much smaller than on SiO(2).
Scientific Reports | 2015
Oliver Ochedowski; B. Kleine Bussmann; Marika Schleberger
In this work we study the effect of thermal processing of exfoliated graphene on mica with respect to changes in graphene morphology and surface potential. Mild annealing to temperatures of about 200°C leads to the removal of small amounts of intercalated water at graphene edges. By heating to 600°C the areas without intercalated water are substantially increased enabling a quantification of the charge transfer properties of the water layer by locally resolved Kelvin probe force microscopy data. A complete removal on a global scale cannot be achieved because mica begins to decompose at temperatures above 600°C. By correlating Kelvin probe force microscopy and Raman spectroscopy maps we find a transition from p-type to n-type doping of graphene during thermal processing which is driven by the dehydration of the mica substrate and an accumulation of defects in the graphene sheet.
arXiv: Materials Science | 2008
Ender Akcöltekin; S. Akcöltekin; O. Osmani; Andreas Duvenbeck; H. Lebius; Marika Schleberger
The irradiation of SrTiO3 single crystals with swift heavy ions leads to modifications of the surface. The details of the morphology of these modifications depend strongly on the angle of incidence and can be characterized by atomic force microscopy. At glancing angles, discontinuous chains of nanosized hillocks appear on the surface. From the variation of the length of the chains with the angle of incidence the latent track radius can be determined. This radius is material specific and allows the calculation of the electron–phonon coupling constant for SrTiO3. We show that a theoretical description of the nanodot creation is possible within a two-temperature model if the spatial electron density is taken into account. The appearance of discontinuous features can be explained easily within this model, but it turns out that the electronic excitation dissipates on a femtosecond timescale, too rapidly to feed sufficient energy into the phonon system in order to induce a thermal melting process. We demonstrate that this can be solved if a temperature-dependent diffusion coefficient is introduced into the model.
New Journal of Physics | 2010
Marko Karlušić; S. Akcöltekin; O. Osmani; I. Monnet; H. Lebius; M. Jakšić; Marika Schleberger
We present experimental and theoretical data on the threshold behaviour of nanodot creation with swift heavy ions. A model calculation based on a two-temperature model that takes into account the spatially resolved electron density gives a threshold of 12 keV nm−1 below which the energy density at the end of the track is no longer high enough to melt the material. In the corresponding experiments, we irradiated SrTiO3 surfaces under grazing incidence with swift heavy ions. The resulting chains of nanodots were analysed by atomic force microscopy (AFM). In addition, some samples of SrTiO3 irradiated under normal incidence were analysed by transmission electron microscopy (TEM). Both experiments showed two thresholds, which were connected with the appearance of tracks and the creation of fully developed tracks. The threshold values were similar for surface and bulk tracks, suggesting that the same processes occur at both glancing and normal incidence. 5 Author to whom any correspondence should be addressed.