Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marika Taylor is active.

Publication


Featured researches published by Marika Taylor.


Physics Reports | 2008

The fuzzball proposal for black holes

Kostas Skenderis; Marika Taylor

Abstract The fuzzball proposal states that associated with a black hole of entropy S , there are exp S horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the black hole microstates, while the original black hole represents the average description of the system. The purpose of this report is to review current evidence for the fuzzball proposal, emphasizing the use of AdS/CFT methods in developing and testing the proposal. In particular, we discuss the status of the proposal for 2 and 3 charge black holes in the D1–D5 system, presenting new derivations and streamlining the discussion of their properties. Results to date support the fuzzball proposal, but further progress is likely to require going beyond the supergravity approximation and sharpening the definition of a “stringy fuzzball”. We outline how the fuzzball proposal could resolve longstanding issues in black hole physics, such as Hawking radiation and information loss. Our emphasis throughout is on connecting different developments and identifying open problems and directions for future research.


Journal of High Energy Physics | 2008

Precision holography for non-conformal branes

Ingmar Kanitscheider; Kostas Skenderis; Marika Taylor

We set up precision holography for the non-conformal branes preserving 16 supersymmetries. The near-horizon limit of all such p-brane solutions with p ? 4, including the case of fundamental string solutions, is conformal to AdSp+2 ? S8?p with a linear dilaton. We develop holographic renormalization for all these cases. In particular, we obtain the most general asymptotic solutions with appropriate Dirichlet boundary conditions, find the corresponding counterterms and compute the holographic 1-point functions, all in complete generality and at the full non-linear level. The result for the stress energy tensor properly defines the notion of mass for backgrounds with such asymptotics. The analysis is done both in the original formulation of the method and also using a radial Hamiltonian analysis. The latter formulation exhibits most clearly the existence of an underlying generalized conformal structure. In the cases of Dp-branes, the corresponding dual boundary theory, the maximally supersymmetric Yang-Mills theory SYMp+1, indeed exhibits the generalized conformal structure found at strong coupling. We compute the holographic 2-point functions of the stress energy tensor and gluon operator and show they satisfy the expected Ward identities and the constraints of generalized conformal structure. The holographic results are also manifestly compatible with the M-theory uplift, with the asymptotic solutions, counterterms, one and two point functions etc. of the IIA F1 and D4 appropriately descending from those of M2 and M5 branes, respectively. We present a few applications including the computation of condensates in Wittens model of holographic YM{}4 theory.


Journal of High Energy Physics | 2007

Fuzzballs with internal excitations

Ingmar Kanitscheider; Kostas Skenderis; Marika Taylor

We construct general 2-charge D1-D5 horizon-free non-singular solutions of IIB supergravity on T4 and K3 describing fuzzballs with excitations in the internal manifold; these excitations are characterized by arbitrary curves. The solutions are obtained via dualities from F1-P solutions of heterotic and type IIB on T4 for the K3 and T4 cases, respectively. We compute the holographic data encoded in these solutions, and show that the internal excitations are captured by vevs of chiral primaries associated with the middle cohomology of T4 or K3. We argue that each geometry is dual to a specific superposition of R ground states determined in terms of the Fourier coefficients of the curves defining the supergravity solution. We compute vevs of chiral primaries associated with the middle cohomology and show that they indeed acquire vevs in the superpositions corresponding to fuzzballs with internal excitations, in accordance with the holographic results. We also address the question of whether the fuzzball program can be implemented consistently within supergravity.


Journal of High Energy Physics | 2011

Holography for Schrodinger backgrounds

Monica Guica; Kostas Skenderis; Marika Taylor; Balt C. van Rees

We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in (d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum kv. We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.


Journal of High Energy Physics | 2006

Kaluza-Klein Holography

Kostas Skenderis; Marika Taylor

We construct a holographic map between asymptotically AdS5 × S5 solutions of 10d supergravity and vacuum expectation values of gauge invariant operators of the dual QFT. The ingredients that enter in the construction are (i) gauge invariant variables so that the KK reduction is independent of any choice of gauge fixing; (ii) the non-linear KK reduction map from 10 to 5 dimensions (constructed perturbatively in the number of fields); (iii) application of holographic renormalization. A non-trivial role in the last step is played by extremal couplings. This map allows one to reliably compute vevs of operators dual to any KK fields. As an application we consider a Coulomb branch solution and compute the first two non-trivial vevs, involving operators of dimension 2 and 4, and reproduce the field theory result, in agreement with non-renormalization theorems. This constitutes the first quantitative test of the gravity/gauge theory duality away from the conformal point involving a vev of an operator dual to a KK field (which is not one of the gauged supergravity fields).


Journal of High Energy Physics | 2012

Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction

Blaise Goutéraux; Jelena Smolic; Milena Smolic; Kostas Skenderis; Marika Taylor

A bstractWe show that a class of Einstein-Maxwell-Dilaton (EMD) theories are re- lated to higher dimensional AdS-Maxwell gravity via a dimensional reduction over com- pact Einstein spaces combined with continuation in the dimension of the compact space to non-integral values (‘generalized dimensional reduction’). This relates (fairly complicated) black hole solutions of EMD theories to simple black hole/brane solutions of AdS-Maxwell gravity and explains their properties. The generalized dimensional reduction is used to infer the holographic dictionary and the hydrodynamic behavior for this class of theories from those of AdS. As a specific example, we analyze the case of a black brane carrying a wave whose universal sector is described by gravity coupled to a Maxwell field and two neutral scalars. At thermal equilibrium and finite chemical potential the two operators dual to the bulk scalar fields acquire expectation values characterizing the breaking of con- formal and generalized conformal invariance. We compute holographically the first order transport coefficients (conductivity, shear and bulk viscosity) for this system.


Journal of High Energy Physics | 2011

The holographic fluid dual to vacuum Einstein gravity

Geoffrey Compère; Paul McFadden; Kostas Skenderis; Marika Taylor

We present an algorithm for systematically reconstructing a solution of the (d + 2)-dimensional vacuum Einstein equations from a (d + 1)-dimensional fluid, extending the non-relativistic hydrodynamic expansion of Bredberg et al. in arXiv:1101.2451 to arbitrary order. The fluid satisfies equations of motion which are the incompressible Navier-Stokes equations, corrected by specific higher-derivative terms. The uniqueness and regularity of this solution is established to all orders and explicit results are given for the bulk metric and the stress tensor of the dual fluid through fifth order in the hydrodynamic expansion. We establish the validity of a relativistic hydrodynamic description for the dual fluid, which has the unusual property of having a vanishing equilibrium energy density. The gravitational results are used to identify transport coefficients of the dual fluid, which also obeys an interesting and exact constraint on its stress tensor. We propose novel Lagrangian models which realise key properties of the holographic fluid.


Journal of High Energy Physics | 2007

Holographic anatomy of fuzzballs

Ingmar Kanitscheider; Kostas Skenderis; Marika Taylor

We present a comprehensive analysis of 2-charge fuzzball solutions, that is, horizon-free non-singular solutions of IIB supergravity characterized by a curve on R4. We propose a precise map that relates any given curve to a specific superposition of R ground states of the D1-D5 system. To test this proposal we compute the holographic 1-point functions associated with these solutions, namely the conserved charges and the vacuum expectation values of chiral primary operators of the boundary theory, and find perfect agreement within the approximations used. In particular, all kinematical constraints are satisfied and the proposal is compatible with dynamical constraints although detailed quantitative tests would require going beyond the leading supergravity approximation. We also discuss which geometries may be dual to a given R ground state. We present the general asymptotic form that such solutions must have and present exact solutions which have such asymptotics and therefore pass all kinematical constraints. Dynamical constraints would again require going beyond the leading supergravity approximation.


Physical Review Letters | 2007

Fuzzball Solutions for Black Holes and D1-Brane-D5-Brane Microstates

Kostas Skenderis; Marika Taylor

We revisit the relation between fuzzball solutions and D1-brane-D5-brane microstates. A consequence of the fact that the R ground states (in the usual basis) are eigenstates of the R charge is that only neutral operators can have nonvanishing expectation values on these states. We compute the holographic 1-point functions of the fuzzball solutions and find that charged chiral primaries have nonzero expectation values, except when the curve characterizing the solution is circular. The nonzero vacuum expectation values reflect the fact that a generic curve breaks R symmetry completely. This implies that fuzzball solutions (excepting circular ones) can only correspond to superpositions of R states and we give a proposal for the superposition corresponding to a given curve. We also address the question of what would be the geometric dual of a given R ground state.


Journal of High Energy Physics | 2007

Anatomy of bubbling solutions

Kostas Skenderis; Marika Taylor

We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N = 4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.

Collaboration


Dive into the Marika Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Jones

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yegor Korovin

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Compère

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Paul McFadden

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Monica Guica

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge