Marike Kolossa-Gehring
Environment Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marike Kolossa-Gehring.
International Journal of Hygiene and Environmental Health | 2009
Kerstin Becker; Thomas Göen; Margarete Seiwert; André Conrad; Helga Pick-Fuss; Johannes Müller; Matthias Wittassek; Christine Schulz; Marike Kolossa-Gehring
Urine samples from GerES IV were analysed for concentrations of the metabolites of DEHP (MEHP, 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP, and 2cx-MMHP), DnBP and DiBP (MnBP and MiBP), BBzP (MBzP), DiNP (7OH-MMeOP, 7oxo-MMeOP and 7cx-MMeHP), and bisphenol A (BPA) to assess the exposure of German children on a representative basis. 600 morning urine samples had been randomly chosen from stored 1800 GerES IV samples originating from 3 to 14 year old children living in Germany. All metabolites could be detected in nearly all urine samples (N=599). Descriptive data analysis leads to mean concentrations of 5-OH-MEHP and 5-oxo-MEHP of 48microg/l and 37microg/l, respectively. The mean concentration of 7OH-MMeOP was 11microg/l. MnBP, MiNP, MBzP showed mean levels of 96microg/l, 94microg/l, and 18microg/l, respectively. The concentrations of the phthalate metabolites decreased with increasing age. Compared to German adults all children showed three to five fold higher urine concentrations than adults analysed in the same decade. For some children the levels of the sum of 5OH-MEHP and 5oxo-MEHP in urine were higher than the German human biomonitoring value (HBM I) of 500mcirog/l, which indicates that adverse health effects cannot be excluded for these subjects with sufficient certainty. The mean concentration of BPA in urine was 2.7microg/l. A rough calculation of the daily intakes on the basis of the measured concentrations in urine resulted in daily intakes two orders of magnitude lower than the current EFSA reference dose of 50microg/kgbw/d.
International Journal of Hygiene and Environmental Health | 2011
Christine Schulz; Michael Wilhelm; Ursel Heudorf; Marike Kolossa-Gehring
In 2007, we reviewed the working principles and working procedures of the German Human Biomonitoring Commission together with the reference values and human biomonitoring (HBM) values derived up to that time. Since then, the Commission has decided to derive additionally HBM I values on the basis of tolerable daily intakes and has used and evaluated this new approach on the metabolites of (2-ethylhexyl) phthalate (DEHP) in urine. Furthermore, the Commission has derived a HBM I value for thallium in urine, has recinded the HBM values for lead in blood, and has updated the HBM values for cadmium in urine. Based on the representative data of the German Environmental Survey on Children from 2003 to 2006 (GerES IV), the Commission has updated the reference values for a large number of environmental pollutants in urine and blood of children in Germany. Since 2007, the Commission has derived new and updated reference values for PFOS and PFOA in human plasma, for thallium in urine, for aromatic amines in urine, for a comprehensive number of phthalate metabolites in urine, and for organochlorine pesticides in human breast milk. Furthermore, the Commission has evaluated background exposure levels for two naphthalene metabolites and acrylamide (using acrylamide-haemoglobin adduct) for the general population. This paper reports the new values, including those already published, in order to provide an updated overview.
Journal of Exposure Science and Environmental Epidemiology | 2012
Holger M. Koch; Marike Kolossa-Gehring; Christa Schröter-Kermani; Jürgen Angerer; Thomas Brüning
Human exposure to Bisphenol A (BPA) is omnipresent. Both the extent of the exposure and its toxicological relevance are controversially discussed. We aim to reliably determine and evaluate the extent of BPA body burden in the German population from 1995 to 2009 based on 600 24 h urine samples and corresponding plasma samples from the Environmental Specimen Bank. We determined total and unconjugated BPA in urine and plasma using on-line solid-phase extraction high-performance liquid chromatography coupled to isotope dilution tandem mass spectrometry with a limit of quantification (LOQ) of 0.1 μg/l. In the stored urines, total BPA was quantifiable in >96% (median: 1.49 μg/l; 95th percentile: 7.37 μg/l), whereas unconjugated BPA was quantifiable only in <15% of the samples. Total BPA concentrations decreased over time, but 24 h urine volumes increased. Therefore, daily intakes calculated from the 24 h urines remained rather constant at a median of 0.037 and a 95th percentile of 0.171 μg BPA/kg body weight/day. In 60 corresponding plasma samples, total BPA levels were generally below the LOQ of 0.1 μg/l and, if quantifiable, most BPA was unconjugated, thus hinting to external contamination. We see total BPA in urine as the most appropriate and robust marker for BPA exposure assessment (if controlled for BPA contamination). Unconjugated BPA in urine and unconjugated or total BPA in plasma where contamination or breakdown of the glucuronide cannot be ruled out are of no value for human exposure assessment.
International Journal of Hygiene and Environmental Health | 2009
Matthias Wittassek; Juergen Angerer; Marike Kolossa-Gehring; Sebastian Daniel Schäfer; Walter Klockenbusch; Lorenz Dobler; Andreas Günsel; Antje Müller; Gerhard Andreas Wiesmüller
The fetus is considered to be the most sensitive stage of life to the potential developmental and reproductive toxicity of the phthalates. But, data on human fetal exposure to phthalates is still scarce. In this pilot study we collected 11 pairs of amniotic fluid (AF) and corresponding maternal urine (MU) samples during Caesarean section and analysed them for several phthalate metabolites by LC-MS/MS. In all AF samples, metabolites of di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), butylbenzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP) were detectable. For the first time, we were able to detect also oxidative phthalate metabolites in AF, with two carboxy metabolites of DEHP showing the highest abundance. In the MU samples, the concentrations of the phthalate metabolites were generally much higher than in the AF samples. There was a statistically significant linear correlation for the DiBP monoester (MiBP) (r=0.93; p<0.001) in the AF and MU samples. We also found a significant correlation for the DEHP monoester (MEHP) (r=0.91; p<0.001), although there was a most likely external contamination with MEHP in the MU samples. Our results suggest that several phthalates or their metabolites, respectively, reach the human fetus, which might be able to affect fetal health. Further research is needed to elucidate fetal metabolism of phthalates and to evaluate the in utero phthalate exposure and the potential effects on fetal reproductive development. Due to the continuous turn over of AF, urinary levels may be most appropriate for assessing both maternal and fetal phthalate exposure.
Journal of Exposure Science and Environmental Epidemiology | 2007
Holger M. Koch; Kerstin Becker; Matthias Wittassek; Margarete Seiwert; Jürgen Angerer; Marike Kolossa-Gehring
We analysed urine samples from the 2001/2002 pilot study of the German Environmental Survey on Children (GerES IV) for the concentrations of the di-n-butylphthalate (DnBP) metabolite mono-n-butylphthalate (MnBP) and the butlybenzylphthalate (BBzP) metabolite mono-benzyl-phthalate (MBzP). The study population consisted of 239 children (106 boys, 133 girls) aged between 2 and 14 years (median 8.5 years). We applied two calculation models to estimate the daily intake for the two parent phthalates from metabolite excretion. One was based on the creatinine-related metabolite concentrations; the other was based on the volume-related metabolite concentrations. Median urinary metabolite concentrations were 174 μg/l (136 μg/g creatinine) for MnBP and 19.7 μg/l (15.3 μg/g creatinine) for MBzP. Such levels have been determined in German children before. Compared to the USA, German median MnBP levels were about 3–10 times higher, whereas MBzP levels were in the same range. Median daily intakes calculated with the creatinine-based model were 4.07 (range: 0.66–76.4; 95th percentile: 14.9) μg/kg body weight (bw)/day for DnBP and 0.42 (range: 0.06–13.9; 95th percentile: 2.57) μg/kg bw/day for BBzP. Daily intakes calculated with the volume-based model were approximately two times higher with a median of 7.61 (range: 0.91–110; 95th percentile: 30.5) μg/kg bw/day for DnBP and a median of 0.77 (range: 0.05–31.3; 95th percentile: 4.48) μg/kg bw/day for BBzP. Using the creatinine model, 28 (11.7%) of the 239 children exceeded the TDI for DnBP of 10 μg/kg bw/day defined by the European Union. Employing the volume model, 89 (37.2%) children exceeded the TDI. For BBzP, no preventive limit values (TDI or RfD) were exceeded. For both phthalates and independent of the model, we found increasing daily intakes with decreasing age. Between 25% (creatinine model) and 50% (volume model) of the 2–4-year old children had daily intakes for DnBP above the TDI.
International Journal of Hygiene and Environmental Health | 2011
Heidi Becker; Frank Herzberg; Agnes Schulte; Marike Kolossa-Gehring
A summary of a critical review by a working group of the German Federal Environment Agency and the German Federal Institute for Risk Assessment on the carcinogenic potential of nanomaterials is presented. After a critical review of the available data, we conclude that the potential carcinogenic risk of nanomaterials can currently be assessed only on a case-by-case basis. There is certain evidence that different forms of CNTs (carbon nanotubes) and nanoscale TiO(2) particles may induce tumours in sensitive animal models. It is assumed that the mode of action of the inhalation toxicity of asbestos-like fibres and of inhalable fractions of biopersistent fine dusts of low toxicity (nano-TiO(2)) is linked to chronic inflammatory processes. Existing epidemiological studies on carcinogenicity for these manufactured nanomaterials are not sufficiently conclusive. Generally speaking, the database is not adequate for an assessment of the carcinogenic potential of nanomaterials. Whereas a number of studies provide evidence of a nano-specific potential to induce tumours, other studies did not. This is possibly due to insufficient characterisation of the test material, difference in the experimental design, the use of different animal models and species and/or differences in dosimetry (both with regard to the appropriate dose metric and the estimated effective dose quantities). An assessment of the carcinogenic potential and its relevance for humans are currently fraught with uncertainty. Furthermore, the nano-specificity of the carcinogenic effects observed cannot be conclusively evaluated. Specific carcinogenic effects of nanomaterials may be both quantitative and qualitative. In quantitative terms, the carcinogenic effects of nanoparticles are thought to be simply more pronounced compared to the corresponding bulk material (due, for example, to the considerably larger surface area and higher number of particles relative to the mass concentration). On the other hand, certain nano-properties such as small size, shape and reactivity, retention time and distribution in the body after overcoming biological barriers, as well as subcellular and molecular interactions may play a role in determining the toxicity in qualitative terms, i.e. the carcinogenic potential of the nanomaterial and the non-nanoscale comparison substance may be fundamentally different. All of these factors leave no doubt about the fact that there is a great need for research in this area and that new standardised test methods need to be developed or existing ones adapted at the very least to achieve valid answers regarding the carcinogenic potential of nanomaterials. Global production of nanomaterials is set to increase in the years to come, and new materials with new properties will be developed, so that greater human exposure to them must be anticipated. No reliable conclusions can currently be drawn about exposure to nanoparticles and their release from products. Firstly, there are substantial deficits in information about the processing of nanomaterials in products and preparations. Secondly, there are only a small number of studies on nanoparticle release, and reliable techniques for measuring and monitoring nanomaterials in different environmental media are still being developed which is both complex and costly. Despite the uncertainties, the findings to date on the carcinogenic potential of nanomaterials must be taken seriously, and precautionary measures to minimise exposure should go hand in hand with the development of a comprehensive and conclusive toxicological methodology and testing procedure for nanostructured materials that includes all possible exposure routes. With regard to possible legal classification of nanomaterials and the transferability of classifications of their non-nanomaterial counterparts, we believe it is necessary to have separate procedures for nano and non-nano forms. Furthermore, criteria for evaluating nano-specific carcinogenic properties should be constantly updated and adapted to the state of knowledge. There is a need here for amendments to be made to EU legislation, as currently nanoforms do not represent a separate category of substance in their own right.
International Journal of Hygiene and Environmental Health | 2011
Thomas Göen; Lorenz Dobler; Jan Koschorreck; Johannes Müller; Gerhard Andreas Wiesmüller; Hans Drexler; Marike Kolossa-Gehring
The exposure of the general population to phthalates is of increasing public health concern. Variations in the internal exposure of the population are likely, because the amounts, distribution and application characters of the phthalate use change over time. Estimating the chronological sequences of the phthalate exposure, we performed a retrospective human biomonitoring study by investigating the metabolites of the five most prominent phthalates in urine. Therefore, 24h-urine samples from the German Environmental Specimen Bank (ESB) collected from 240 subjects (predominantly students, age range 19-29 years, 120 females, 120 males) in the years 2002, 2004, 2006 and 2008 (60 individuals each), were analysed for the concentrations of mono-n-butyl phthalate (MnBP) as metabolite of di-n-butyl phthalate (DnBP), mono-iso-butyl phthalate (MiBP) as metabolite of di-iso-butyl phthalate (DiBP), mono-benzyl phthalate (MBzP) as metabolite of butylbenzyl phthalate (BBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) and mono-(2-carboxymethyl hexyl) phthalate (2cx-MMHxP) as metabolites of di(2-ethylhexyl) phthalate (DEHP), monohydroxylated (OH-MiNP), monooxidated (oxo-MiNP) and monocarboxylated (cx-MiNP) mono-iso-nonylphthalates as metabolites of di-iso-nonyl phthalates (DiNP). Based on the urinary metabolite excretion, together with results of a previous study, which covered the years 1988-2003, we investigated the chronological sequences of the phthalate exposure over two decades. In more than 98% of the urine samples metabolites of all five phthalates were detectable indicating a ubiquitous exposure of people living in Germany to all five phthalates throughout the period investigated. The medians in samples from the different years investigated are 65.4 (2002), 38.5 (2004), 29.3 (2006) and 19.6 μg/l (2008) for MnBP, 31.4 (2002), 25.4 (2004), 31.8 (2006) and 25.5 μg/l (2008) for MiBP, 7.8 (2002), 6.3 (2004), 3.6 (2006) and 3.8 μg/l (2008) for MBzP, 7.0 (2002), 5.6 (2004), 4.1 (2006) and 3.3 μg/l (2008) for MEHP, 19.6 (2002), 16.2 (2004), 13.2 (2006) and 9.6 μg/l (2008) for 5OH-MEHP, 13.9 (2002), 11.8 (2004), 8.3 (2006) and 6.4 μg/l (2008) for 5oxo-MEHP, 18.7 (2002), 16.5 (2004), 13.8 (2006) and 10.2 μg/l (2008) for 5cx-MEPP, 7.2 (2002), 6.5 (2004), 5.1 (2006) and 4.6 μg/l (2008) for 2cx-MMHxP, 3.3 (2002), 2.8 (2004), 3.5 (2006) and 3.6 μg/l (2008) for OH-MiNP, 2.1 (2002), 2.1 (2004), 2.2 (2006) and 2.3 μg/l (2008) for oxo-MiNP and 4.1 (2002), 3.2 (2004), 4.1 (2006) and 3.6 μg/l (2008) for cx-MiNP. The investigation of the time series 1988-2008 indicates a decrease of the internal exposure to DnBP by the factor of 7-8 and to DEHP and BzBP by the factor of 2-3. In contrast, an increase of the internal exposure by the factor of 4 was observed for DiNP over the study period. The exposure to DiBP was found to be stable. In summary, we found decreases of the internal human exposure for legally restricted phthalates whereas the exposure to their substitutes increased. Future investigations should verify these trends. This is of increasing importance since the European Commission decided to require ban or authorization from 1.1.2015 for DEHP, DnBP, DiBP and BzBP according to REACh Annex XIV.
International Journal of Hygiene and Environmental Health | 2014
André Schütze; Marike Kolossa-Gehring; Petra Apel; Thomas Brüning; Holger M. Koch
DINCH (diisononylcyclohexane-1,2-dicarboxylate) was introduced into the world market in 2002 as a non-aromatic plasticizer and phthalate substitute. We analyzed 300 urine samples (24 h voids) of the German Environmental Specimen Bank (ESB for Human tissues, ESB Hum) for specific DINCH metabolites by on-line HPLC-MS/MS with isotope dilution quantification. Urine samples of the ESB Hum were from the years 1999, 2003, 2006, 2009 and 2012, chosen to investigate the appearance and a possible trend of DINCH exposure since its market introduction. No DINCH metabolites were detected in the 1999 and 2003 samples. From 2006 on, the percentage of samples with DINCH metabolites above the LOQ increased significantly over the years (7% in 2006, 43% in 2009 and 98% in 2012). The cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester (OH-MINCH) was the predominant metabolite. Median (and 95th percentile) concentrations (in μg/l) increased from 0.75, p<0.001). The median (95th percentile) DINCH intake in 2012 was calculated to be 0.14 (1.07)μg/kg body weight/day which is considerably below daily intakes currently deemed tolerable. DINCH is regarded to have a preferred toxicological profile over certain anti-androgenic phthalates. The continuation of DINCH measurements in the ESB Hum and other human biomonitoring studies like the German Environmental Survey (GerES) allows tracking the development of DINCH body burdens, the distribution of exposure levels and daily intakes, providing basic data for future toxicological assessment and further epidemiological studies.
Environmental Health Perspectives | 2014
Elly Den Hond; Eva Govarts; Hanny Willems; Roel Smolders; Ludwine Casteleyn; Marike Kolossa-Gehring; Gerda Schwedler; Margarete Seiwert; Ulrike Fiddicke; Argelia Castaño; Marta Esteban; Jürgen Angerer; Holger M. Koch; Birgit K. Schindler; Ovnair Sepai; Karen Exley; Louis Bloemen; Milena Horvat; Lisbeth E. Knudsen; Anke Joas; Reinhard Joas; Pierre Biot; Dominique Aerts; Gudrun Koppen; Andromachi Katsonouri; Adamos Hadjipanayis; Andrea Krsková; Marek Maly; Thit A. Mørck; Peter Rudnai
Background For Europe as a whole, data on internal exposure to environmental chemicals do not yet exist. Characterization of the internal individual chemical environment is expected to enhance understanding of the environmental threats to health. Objectives We developed and applied a harmonized protocol to collect comparable human biomonitoring data all over Europe. Methods In 17 European countries, we measured mercury in hair and cotinine, phthalate metabolites, and cadmium in urine of 1,844 children (5–11 years of age) and their mothers. Specimens were collected over a 5-month period in 2011–2012. We obtained information on personal characteristics, environment, and lifestyle. We used the resulting database to compare concentrations of exposure biomarkers within Europe, to identify determinants of exposure, and to compare exposure biomarkers with health-based guidelines. Results Biomarker concentrations showed a wide variability in the European population. However, levels in children and mothers were highly correlated. Most biomarker concentrations were below the health-based guidance values. Conclusions We have taken the first steps to assess personal chemical exposures in Europe as a whole. Key success factors were the harmonized protocol development, intensive training and capacity building for field work, chemical analysis and communication, as well as stringent quality control programs for chemical and data analysis. Our project demonstrates the feasibility of a Europe-wide human biomonitoring framework to support the decision-making process of environmental measures to protect public health. Citation Den Hond E, Govarts E, Willems H, Smolders R, Casteleyn L, Kolossa-Gehring M, Schwedler G, Seiwert M, Fiddicke U, Castaño A, Esteban M, Angerer J, Koch HM, Schindler BK, Sepai O, Exley K, Bloemen L, Horvat M, Knudsen LE, Joas A, Joas R, Biot P, Aerts D, Koppen G, Katsonouri A, Hadjipanayis A, Krskova A, Maly M, Mørck TA, Rudnai P, Kozepesy S, Mulcahy M, Mannion R, Gutleb AC, Fischer ME, Ligocka D, Jakubowski M, Reis MF, Namorado S, Gurzau AE, Lupsa IR, Halzlova K, Jajcaj M, Mazej D, Snoj Tratnik J, López A, Lopez E, Berglund M, Larsson K, Lehmann A, Crettaz P, Schoeters G. 2015. First steps toward harmonized human biomonitoring in Europe: demonstration project to perform human biomonitoring on a European scale. Environ Health Perspect 123:255–263; http://dx.doi.org/10.1289/ehp.1408616
International Journal of Hygiene and Environmental Health | 2012
Marike Kolossa-Gehring; Kerstin Becker; André Conrad; Christa Schröter-Kermani; Christine Schulz; Margarete Seiwert
Production of chemicals, use of products and consumer goods, contamination of food as well as todays living conditions are related to a substantial exposure of humans to chemicals. Safety of human beings and the environment has to be safeguarded by producers and government. Human biomonitoring (HBM) has proven to be a useful and powerful tool to control human exposure and facilitate risk assessment. Therefore, the German Federal Environment Agency (Umweltbundesamt, UBA) employs two major HBM tools, the German Environmental Survey (GerES) and the German Environmental Specimen Bank (ESB). GerES is a nationwide population representative study on HBM and external human exposure, which has, inter alia, been used to identify lead in tap water, lead dustfall, time spent in traffic, and age of dwelling as exposure sources for lead and, thus, to derive risk reduction measures. The ESB is a permanent monitoring instrument and an archive for human specimens. Retrospective monitoring of phthalates and bisphenol A provides a continuous historical record of human exposure in Germany, over the last decades. Additionally it revealed that estimations of human exposure based on production and consumption data may supply misleading information on human exposure. HBM data demonstrated that (a) the use if the restricted isomer di-n-butylphthalat decreased while di-i-butylphthalate levels remained constant and (b) human bisphenol A exposure might be overestimated without monitoring data. The decrease of polycyclic aromatic hydrocarbon-exposure proves the success of German environmental policy after German re-unification. In addition to GerES and ESB UBA is involved in different co-operation networks, the two most prominent of which are (1) the harmonization of HBM in Europe (ESBIO; Expert Team to Support Biomonitoring in Europe, COPHES/DEMOCOPHES; Consortium to Perform Human Biomonitoring on a European Scale/Demonstration of a study to Coordinate and Perform Human Biomonitoring on a European Scale) and (2) the co-operation between BMU and the German Chemical Industry Association (VCI). In the latter project emphasis will be placed on substances with a potential relevance for health and on substances to which the general population might potentially be exposed to a considerable extent and for which HBM methods are not available up to now.