Mariko Higuchi
Japan Atomic Energy Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariko Higuchi.
Journal of Computational Chemistry | 2012
Hirofumi Fujimoto; Mariko Higuchi; Manabu Koike; Hirotaka Ode; Miroslav Pinak; Juraj Kotulic Bunta; Toshiyuki Nemoto; Takashi Sakudoh; Naoko Honda; Hideaki Maekawa; Kimiaki Saito; Kozo Tsuchida
Acetylation of lysine residues, one of the most common protein post‐transcriptional modifications, is thought to regulate protein affinity with other proteins or nucleotides. Experimentally, the effects of acetylation have been studied using recombinant mutants in which lysine residues (K) are substituted with glutamine (Q) as a mimic of acetyl lysine (KQ mutant), or with arginine (R) as a mimic of nonacetylated lysine (KR mutant). These substitutions, however, have not been properly validated. The effects lysine acetylation on Ku, a multifunctional protein that has been primarily implicated in DNA repair and cell survival, are characterized herein using a series of computer simulations. The binding free energy was reduced in the KQ mutant, while the KR mutant had no effect, which is consistent with previous experimental results. Unexpectedly, the binding energy between Ku and DNA was maintained at almost the same level as in the wild type protein despite full acetylation of the lysine residues. These results suggest that the effects of acetylation may be overestimated when the KQ mutant is used as a mimic of the acetylated protein.
International Journal of Radiation Biology | 2012
Takeshi Kai; Mariko Higuchi; Kentaro Fujii; Ritsuko Watanabe; Akinari Yokoya
Abstract Purpose: To develop a method for simulating the dynamics of the photoelectrons and Auger electrons ejected from DNA molecules irradiated with pulsed monochromatic X-rays. Materials and methods: A 30-base-pair (bp) DNA molecule was used as the target model, and the X-rays were assumed to have a Gaussian-shaped time distribution. Photoionization and Auger decay were considered as the atomic processes. The atoms from which the photoelectrons or Auger electrons were emitted were specified in the DNA molecule (or DNA ion) using the Monte Carlo method, and the trajectory of each electron in the electric field formed around the positively charged DNA molecule was calculated with a Newtonian equation. The kinetics of the electrons produced by irradiation with X-rays at an intensity ranging from 1 × 1012 to 1 × 1016 photons/mm2 and energies of 380 eV (below the carbon K-edge), 435 eV (above the nitrogen K-edge), and 560 eV (above the oxygen K-edge) were evaluated. Results: It was found that at an X-ray intensity of 1 × 1014 photons/mm2 or less, all the produced electrons escaped from the target. However, above an X-ray intensity of 1 × 1015 photons/mm2 and an energy of 560 eV, some photoelectrons that were ejected from the oxygen atoms were trapped near the target DNA. Conclusions: A simulation method for studying the trajectories of electrons ejected from a 30-bp DNA molecule irradiated with pulsed monochromatic X-rays has been developed. The present results show that electron dynamics are strongly dependent on the charged density induced in DNA by pulsed X-ray irradiation.
Journal of Structural Biology | 2011
Mariko Higuchi; Jumpei Fujii; Yoshiteru Yonetani; Akio Kitao; Nobuhiro Go
MutT distinguishes substrate 8-oxo-dGTP from dGTP and also 8-oxo-dGMP from dGMP despite small differences of chemical structures between them. In this paper we show by the method of molecular dynamics simulation that the transition between conformational substates of MutT is a key mechanism for a high-resolution molecular recognition of the differences between the very similar chemical compounds. (1) The native state MutT has two conformational substates with similar free energies, each characterized by either open or closed of two loops surrounding the substrate binding active site. Between the two substates, the open substate is more stable in free MutT and in dGMP-MutT complex, and the closed substate is more stable in 8-oxo-dGMP-MutT complex. (2) Conformational fluctuation of the open substate is much larger than that of the closed substate. An estimate of associated entropy difference was found to be consistent with the experimentally found difference of entropy contribution to the binding free energies of the two molecules. (3) A hydrogen bond between H7 atom of 8-oxo-dGMP and the sidechain of Asn119 plays a crucial role for maintaining the closed substate in 8-oxo-dGMP-MutT complex. When this hydrogen bond is absent in the H7-deficient dGMP-MutT complex, the closed substate is no more maintained and transition to the more entropically-favored open substate is induced. (4) Thus, this mechanism of the hydrogen bond controlling the relative stabilities of the drastically different two conformational substates enhances the resolution to recognize the small difference of the chemical structures between the two molecules, dGMP and 8-oxo-dGMP.
Radiation Physics and Chemistry | 2014
Takeshi Kai; Akinari Yokoya; Masatoshi Ukai; Kentaro Fujii; Mariko Higuchi; Ritsuko Watanabe
生物物理 | 2011
Mariko Higuchi; Miroslav Pinak
Seibutsu Butsuri | 2011
Mariko Higuchi; Miroslav Pinak
生物物理 | 2010
Mariko Higuchi; Miroslav Pinak
Seibutsu Butsuri | 2010
Mariko Higuchi; Miroslav Pinak
生物物理 | 2009
Mariko Higuchi; Miroslav Pinak
Seibutsu Butsuri | 2009
Mariko Higuchi; Miroslav Pinak