Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariko Nagashima is active.

Publication


Featured researches published by Mariko Nagashima.


Cell | 1999

RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.

Marion A. Hofmann; Steven Drury; Caifeng Fu; Wu Qu; Akihiko Taguchi; Yan Lu; Cecilia Avila; Neeraja Kambham; Angelika Bierhaus; Peter P. Nawroth; Markus F. Neurath; Timothy Slattery; Dale Beach; John McClary; Mariko Nagashima; John Morser; David M. Stern; Ann Marie Schmidt

S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin superfamily. Interaction of EN-RAGEs with cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Blockade of EN-RAGE/RAGE quenches delayed-type hypersensitivity and inflammatory colitis in murine models by arresting activation of central signaling pathways and expression of inflammatory gene mediators. These data highlight a novel paradigm in inflammation and identify roles for EN-RAGEs and RAGE in chronic cellular activation and tissue injury.


Journal of Experimental Medicine | 2003

The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment.

Triantafyllos Chavakis; Angelika Bierhaus; Nadia Al-Fakhri; Darius Schneider; Steffen Witte; Thomas Linn; Mariko Nagashima; John Morser; Bernd Arnold; Klaus T. Preissner; Peter P. Nawroth

The pattern recognition receptor, RAGE (receptor for advanced glycation endproducts), propagates cellular dysfunction in several inflammatory disorders and diabetes. Here we show that RAGE functions as an endothelial adhesion receptor promoting leukocyte recruitment. In an animal model of thioglycollate-induced acute peritonitis, leukocyte recruitment was significantly impaired in RAGE-deficient mice as opposed to wild-type mice. In diabetic wild-type mice we observed enhanced leukocyte recruitment to the inflamed peritoneum as compared with nondiabetic wild-type mice; this phenomenon was attributed to RAGE as it was abrogated in the presence of soluble RAGE and was absent in diabetic RAGE-deficient mice. In vitro, RAGE-dependent leukocyte adhesion to endothelial cells was mediated by a direct interaction of RAGE with the β2-integrin Mac-1 and, to a lower extent, with p150,95 but not with LFA-1 or with β1-integrins. The RAGE–Mac-1 interaction was augmented by the proinflammatory RAGE-ligand, S100-protein. These results were corroborated by analysis of cells transfected with different heterodimeric β2-integrins, by using RAGE-transfected cells, and by using purified proteins. The RAGE–Mac-1 interaction defines a novel pathway of leukocyte recruitment relevant in inflammatory disorders associated with increased RAGE expression, such as in diabetes, and could provide the basis for the development of novel therapeutic applications.


Journal of Biological Chemistry | 2003

Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation.

Timothy Myles; Toshihiko Nishimura; Thomas H. Yun; Mariko Nagashima; John Morser; Andrew J. Patterson; Ronald G. Pearl; Lawrence L. K. Leung

The latent plasma carboxypeptidase thrombin-activable fibrinolysis inhibitor (TAFI) is activated by thrombin/thrombomodulin on the endothelial cell surface, and functions in dampening fibrinolysis. In this study, we examined the effect of activated TAFI (TAFIa) in modulating the proinflammatory functions of bradykinin, complement C5a, and thrombin-cleaved osteopontin. Hydrolysis of bradykinin and C5a and thrombin-cleaved osteopontin peptides by TAFIa was as efficient as that of plasmin-cleaved fibrin peptides, indicating that these are also good substrates for TAFIa. Plasma carboxypeptidase N, generally regarded as the physiological regulator of kinins, was much less efficient than TAFIa. TAFIa abrogated C5a-induced neutrophil activation in vitro. Jurkat cell adhesion to osteopontin was markedly enhanced by thrombin cleavage of osteopontin. This was abolished by TAFIa treatment due to the removal of the C-terminal Arg168 by TAFIa from the exposed SVVYGLR α4β1 integrin-binding site in thrombin-cleaved osteopontin. Thus, thrombin cleavage of osteopontin followed by TAFIa treatment may sequentially up- and down-modulate the pro-inflammatory properties of osteopontin. An engineered anticoagulant thrombin, E229K, was able to activate endogenous plasma TAFI in mice, and E229K thrombin infusion effectively blocked bradykinin-induced hypotension in wild-type, but not in TAFI-deficient, mice in vivo. Our data suggest that TAFIa may have a broad anti-inflammatory role, and its function is not restricted to fibrinolysis.


Journal of Clinical Investigation | 2002

Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life

Mariko Nagashima; Zheng-Feng Yin; Lei Zhao; Kathy White; Yanhong Zhu; Nina Lasky; Meredith Halks-Miller; George J. Broze; William P. Fay; John Morser

To investigate the consequence of deficiency in thrombin-activatable fibrinolysis inhibitor (TAFI), we generated homozygous TAFI-deficient mice by targeted gene disruption. Intercrossing of heterozygous TAFI mice produced offspring in the expected Mendelian ratio, indicating that transmission of the mutant TAFI allele did not lead to embryonic lethality. TAFI-deficient mice developed normally, reached adulthood, and were fertile. No gross physical abnormalities were observed up to 24 months of age. Hematological analysis of TAFI-deficient mice did not show any major differences including plasma fibrinogen level, prothrombin time, and activated partial thromboplastin time. TAFI-deficient mice did not suffer from excess bleeding as determined by blood loss following tail transection, although their plasma failed to prolong clot lysis time in vitro. In vivo, TAFI deficiency did not influence occlusion time in either an arterial or a venous injury model. TAFI deficiency did not improve survival rate compared with the wild-type in thrombin-induced thromboembolism, factor X coagulant protein-induced thrombosis, and endotoxin-induced disseminated intravascular coagulation. Furthermore, TAFI deficiency did not alter kaolin-induced writhing response, implying that TAFI does not play a major role in bradykinin catabolism. The current study demonstrates that TAFI deficiency does not change normal responses to acute challenges.


Journal of Biological Chemistry | 1999

Thrombin Interacts with Thrombomodulin, Protein C, and Thrombin-activatable Fibrinolysis Inhibitor via Specific and Distinct Domains

Scott W. Hall; Mariko Nagashima; Lei Zhao; John Morser; Lawrence L. K. Leung

A collection of 56 purified thrombin mutants, in which 76 charged or polar surface residues on thrombin were mutated to alanine, was used to identify key residues mediating the interactions of thrombin with thrombomodulin (TM), protein C, and thrombin-activatable fibrinolysis inhibitor (TAFI). Comparison of protein C activation in the presence and absence of TM identified 11 residues mediating the thrombin-TM interaction (Lys21, Gln24, Arg62, Lys65, His66, Arg68, Thr69, Tyr71, Arg73, Lys77, Lys106). Three mutants (E25A, D51A, R89A/R93A/E94A) were found to have decreased ability to activate TAFI yet retained normal protein C activation, whereas three other mutants (R178A/R180A/D183A, E229A, R233A) had decreased ability to activate protein C but maintained normal TAFI activation. One mutant (W50A) displayed decreased activation of both substrates. Mapping of these functional residues on thrombin revealed that the 11 residues mediating the thrombin-TM interaction are all located in exosite I. Residues important in TAFI activation are located above the active-site cleft, whereas residues involved in protein C are located below the active-site cleft. In contrast to the extensive overlap of residues mediating TM binding and fibrinogen clotting, these data show that distinct domains in thrombin mediate its interactions with TM, protein C, and TAFI. These studies demonstrate that selective enzymatic properties of thrombin can be dissociated by site-directed mutagenesis.


Arthritis & Rheumatism | 2009

Thrombin-activatable carboxypeptidase B cleavage of osteopontin regulates neutrophil survival and synoviocyte binding in rheumatoid arthritis.

Shadi Sharif; Xiao-Yan Du; Timothy Myles; Jason Jungsik Song; Elizabeth Price; David M. Lee; Stuart B. Goodman; Mariko Nagashima; John Morser; William H. Robinson; Lawrence L. K. Leung

OBJECTIVE Osteopontin (OPN) is a proinflammatory cytokine that plays an important role in the pathogenesis of rheumatoid arthritis (RA). OPN can be cleaved by thrombin, resulting in OPN-R and exposing the cryptic C-terminal alpha4beta1 and alpha9beta1 integrin-binding motif (SVVYGLR). Thrombin-activatable carboxypeptidase B (CPB), also called thrombin-activatable fibrinolysis inhibitor, removes the C-terminal arginine from OPN-R, generating OPN-L and abrogating its enhanced cell binding. We undertook this study to investigate the roles of OPN-R and OPN-L in synoviocyte adhesion, which contributes to the formation of invasive pannus, and in neutrophil survival, which affects inflammatory infiltrates in RA. METHODS Using specifically developed enzyme-linked immunosorbent assays, we tested the synovial fluid of patients with RA, osteoarthritis (OA), and psoriatic arthritis (PsA) to determine OPN-R, OPN-L, and full-length OPN (OPN-FL) levels. RESULTS Elevated levels of OPN-R and OPN-L were found in synovial fluid samples from RA patients, but not in samples from OA or PsA patients. Increased levels of OPN-R and OPN-L correlated with increased levels of multiple inflammatory cytokines, including tumor necrosis factor alpha and interleukin-6. Immunohistochemical analyses revealed robust expression of OPN-FL, but only minimal expression of OPN-R, in RA synovium, suggesting that cleaved OPN is released into synovial fluid. In cellular assays, OPN-FL, and to a lesser extent OPN-R and OPN-L, had an antiapoptotic effect on neutrophils. OPN-R augmented RA fibroblast-like synoviocyte binding mediated by SVVYGLR binding to alpha4beta1, whereas OPN-L did not. CONCLUSION Thrombin activation of OPN (resulting in OPN-R) and its subsequent inactivation by thrombin-activatable CPB (generating OPN-L) occurs locally within inflamed joints in RA. Our data suggest that thrombin-activatable CPB plays a central homeostatic role in RA by regulating neutrophil viability and reducing synoviocyte adhesion.


Journal of Biological Chemistry | 2009

The Roles of Selected Arginine and Lysine Residues of TAFI (Pro-CPU) in Its Activation to TAFIa by the Thrombin-Thrombomodulin Complex

Chengliang Wu; Paul Y. Kim; Reg Manuel; Marian Seto; Marc Whitlow; Mariko Nagashima; John Morser; Ann Gils; Paul Declerck; Michael E. Nesheim

Thrombomodulin (TM) increases the catalytic efficiency of thrombin (IIa)-mediated activation of thrombin-activable fibrinolysis inhibitor (TAFI) 1250-fold. Negatively charged residues of the C-loop of TM-EGF-like domain 3 are required for TAFI activation. Molecular models suggested several positively charged residues of TAFI with which the C-loop residues could interact. Seven TAFI mutants were constructed to determine if these residues are required for efficient TAFI activation. TAFI wild-type or mutants were activated in the presence or absence of TM and the kinetic parameters of TAFI activation were determined. When the three consecutive lysine residues in the activation peptide of TAFI were substituted with alanine (K42/43/44A), the catalytic efficiencies for TAFI activation with TM decreased 8-fold. When other positively charged surface residues of TAFI (Lys-133, Lys-211, Lys-212, Arg-220, Lys-240, or Arg-275) were mutated to alanine, the catalytic efficiencies for TAFI activation with TM decreased by 1.7–2.7-fold. All decreases were highly statistically significant. In the absence of TM, catalytic efficiencies ranged from 2.8-fold lower to 1.24-fold higher than wild-type. None of these, except the 2.8-fold lower value, was statistically significant. The average half-life of the TAFIa mutants was 8.1 ± 0.6 min, and that of wild type was 8.4 ± 0.3 min at 37 °C. Our data show that these residues are important in the activation of TAFI by IIa, especially in the presence of TM. Whether the mutated residues promote a TAFI-TM or TAFI-IIa interaction remains to be determined. In addition, these residues do not influence spontaneous inactivation of TAFIa.


Journal of Biological Chemistry | 1995

The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin

Osamu Hori; Jerold Brett; Timothy Slattery; Rong Cao; Jinghua Zhang; Jing Xian Chen; Mariko Nagashima; Erik R. Lundh; Sharmila Vijay; Di Nitecki; John Morser; David B. Stern; Ann Marie Schmidt


Journal of Biological Chemistry | 1993

Alanine-scanning mutagenesis of the epidermal growth factor-like domains of human thrombomodulin identifies critical residues for its cofactor activity.

Mariko Nagashima; Erik R. Lundh; J C Leonard; John Morser; J F Parkinson


Cell | 1989

Transmembrane TGF-? precursors activate EGF/TGF-? receptors

Rainer K. Brachmann; Patricia B. Lindquist; Mariko Nagashima; William J. Kohr; T. Lipari; Melanie D. Napier; Rik Derynck

Collaboration


Dive into the Mariko Nagashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George J. Broze

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge