Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariko Tokito is active.

Publication


Featured researches published by Mariko Tokito.


Nature Genetics | 2003

Mutant dynactin in motor neuron disease.

Imke Puls; Catherine Jonnakuty; Bernadette H. LaMonte; Erika L.F. Holzbaur; Mariko Tokito; Eric A. Mann; Mary Kay Floeter; Kimberly Bidus; Dennis Drayna; Shin J. Oh; Robert H. Brown; Christy L. Ludlow; Kenneth H. Fischbeck

Impaired axonal transport in motor neurons has been proposed as a mechanism for neuronal degeneration in motor neuron disease. Here we show linkage of a lower motor neuron disease to a region of 4 Mb at chromosome 2p13. Mutation analysis of a gene in this interval that encodes the largest subunit of the axonal transport protein dynactin showed a single base-pair change resulting in an amino-acid substitution that is predicted to distort the folding of dynactins microtubule-binding domain. Binding assays show decreased binding of the mutant protein to microtubules. Our results show that dysfunction of dynactin-mediated transport can lead to human motor neuron disease.


Neuron | 2002

Disruption of Dynein/Dynactin Inhibits Axonal Transport in Motor Neurons Causing Late-Onset Progressive Degeneration

Bernadette H. LaMonte; Karen Wallace; Beth Holloway; Spencer S. Shelly; Jennifer Ascaño; Mariko Tokito; Thomas J. Van Winkle; David Howland; Erika L.F. Holzbaur

To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle. Previous transgenic mouse models of ALS have shown abnormalities in microtubule-based axonal transport. In this report, we describe a mouse model that confirms the critical role of disrupted axonal transport in the pathogenesis of motor neuron degenerative disease.


Nature Cell Biology | 2001

Dynein binds to β-catenin and may tether microtubules at adherens junctions

Lee A. Ligon; Mariko Tokito; Erika L.F. Holzbaur

Interactions between microtubule and actin networks are thought to be crucial for mechanical and signalling events at the cell cortex. Cytoplasmic dynein has been proposed to mediate many of these interactions. Here, we report that dynein is localized to the cortex at adherens junctions in cultured epithelial cells and that this localization is sensitive to drugs that disrupt the actin cytoskeleton. Dynein is recruited to developing contacts between cells, where it localizes with the junctional proteins β-catenin and E-cadherin. Microtubules project towards these early contacts and we hypothesize that dynein captures and tethers microtubules at these sites. Dynein immunoprecipitates with β-catenin, and biochemical analysis shows that dynein binds directly to β-catenin. Overexpression of β-catenin disrupts the cellular localization of dynein and also dramatically perturbs the organization of the cellular microtubule array. In cells overexpressing β-catenin, the centrosome becomes disorganized and microtubules no longer appear to be anchored at the cortex. These results identify a novel role for cytoplasmic dynein in capturing and tethering microtubules at adherens junctions, thus mediating cross-talk between actin and microtubule networks at the cell cortex.


Current Biology | 2010

Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport

Adam G. Hendricks; Eran Perlson; Jennifer L. Ross; Harry W. Schroeder; Mariko Tokito; Erika L. F. Holzbaur

The microtubule motors kinesin and dynein function collectively to drive vesicular transport. High-resolution tracking of vesicle motility in the cell indicates that transport is often bidirectional, characterized by frequent directional changes. However, the mechanisms coordinating the collective activities of oppositely oriented motors bound to the same cargo are not well understood. To examine motor coordination, we purified neuronal transport vesicles and analyzed their motility via automated particle tracking with nanometer resolution. The motility of purified vesicles reconstituted in vitro closely models the movement of LysoTracker-positive vesicles in primary neurons, where processive bidirectional motility is interrupted with frequent directional switches, diffusional movement, and pauses. Quantitative analysis indicates that vesicles copurify with a low number of stably bound motors: one to five dynein and one to four kinesin motors. These observations compare well to predictions from a stochastic tug-of-war model, where transport is driven by the force-dependent kinetics of teams of opposing motors in the absence of external regulation. Together, these observations indicate that vesicles move robustly with a small complement of tightly bound motors and suggest an efficient regulatory scheme for bidirectional motility where small changes in the number of engaged motors manifest in large changes in the motility of cargo.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Huntingtin facilitates dynein/dynactin-mediated vesicle transport

Juliane P. Caviston; Jennifer L. Ross; Sheila M. Antony; Mariko Tokito; Erika L. F. Holzbaur

Cytoplasmic dynein is a multisubunit microtubule motor complex that, together with its activator, dynactin, drives vesicular cargo toward the minus ends of microtubules. Huntingtin (Htt) is a vesicle-associated protein found in both neuronal and nonneuronal cells that is thought to be involved in vesicular transport. In this study, we demonstrate through yeast two-hybrid and affinity chromatography assays that Htt and dynein intermediate chain interact directly; endogenous Htt and dynein coimmunoprecipitate from mouse brain cytosol. Htt RNAi in HeLa cells results in Golgi disruption, similar to the effects of compromising dynein/dynactin function. In vitro studies reveal that Htt and dynein are both present on vesicles purified from mouse brain. Antibodies to Htt inhibited vesicular transport along microtubules, suggesting that Htt facilitates dynein-mediated vesicle motility. In vivo inhibition of dynein function results in a significant redistribution of Htt to the cell periphery, suggesting that dynein transports Htt-associated vesicles toward the cell center. Together these findings indicate that Htt binds to dynein and acts in a complex along with dynactin and Htt-associated protein-1 to facilitate vesicular transport.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Microtubule plus-end tracking by CLIP-170 requires EB1

Ram Dixit; Brian Barnett; Jacob E. Lazarus; Mariko Tokito; Yale E. Goldman; Erika L. F. Holzbaur

Microtubules are polarized polymers that exhibit dynamic instability, with alternating phases of elongation and shortening, particularly at the more dynamic plus-end. Microtubule plus-end tracking proteins (+TIPs) localize to and track with growing microtubule plus-ends in the cell. +TIPs regulate microtubule dynamics and mediate interactions with other cellular components. The molecular mechanisms responsible for the +TIP tracking activity are not well understood, however. We reconstituted the +TIP tracking of mammalian proteins EB1 and CLIP-170 in vitro at single-molecule resolution using time-lapse total internal reflection fluorescence microscopy. We found that EB1 is capable of dynamically tracking growing microtubule plus-ends. Our single-molecule studies demonstrate that EB1 exchanges rapidly at microtubule plus-ends with a dwell time of <1 s, indicating that single EB1 molecules go through multiple rounds of binding and dissociation during microtubule polymerization. CLIP-170 exhibits lattice diffusion and fails to selectively track microtubule ends in the absence of EB1; the addition of EB1 is both necessary and sufficient to mediate plus-end tracking by CLIP-170. Single-molecule analysis of the CLIP-170–EB1 complex also indicates a short dwell time at growing plus-ends, an observation inconsistent with the copolymerization of this complex with tubulin for plus-end-specific localization. GTP hydrolysis is required for +TIP tracking, because end-specificity is lost when tubulin is polymerized in the presence of guanosine 5′-[α,β-methylene]triphosphate (GMPCPP). Together, our data provide insight into the mechanisms driving plus-end tracking by mammalian +TIPs and suggest that EB1 specifically recognizes the distinct lattice structure at the growing microtubule end.


Journal of Cell Biology | 2006

A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation.

Jennifer R. Levy; Charlotte J. Sumner; Juliane P. Caviston; Mariko Tokito; Srikanth Ranganathan; Lee A. Ligon; Karen Wallace; Bernadette H. LaMonte; George G. Harmison; Imke Puls; Kenneth H. Fischbeck; Erika L.F. Holzbaur

The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain lowers the affinity of p150Glued for microtubules and EB1. Cell lines from patients are morphologically normal but show delayed recovery after nocodazole treatment, consistent with a subtle disruption of dynein/dynactin function. The G59S mutation disrupts the folding of the CAP-Gly domain, resulting in aggregation of the p150Glued protein both in vitro and in vivo, which is accompanied by an increase in cell death in a motor neuron cell line. Overexpression of the chaperone Hsp70 inhibits aggregate formation and prevents cell death. These data support a model in which a point mutation in p150Glued causes both loss of dynein/dynactin function and gain of toxic function, which together lead to motor neuron cell death.


Molecular Biology of the Cell | 2011

Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes

Juliane P. Caviston; Allison L. Zajac; Mariko Tokito; Erika L.F. Holzbaur

We investigated the role of the membrane-associated scaffolding protein huntingtin (Htt) in the dynein-mediated transport of early, recycling, and late endosomes and lysosomes. Our observations support a model of Htt as a facilitator of dynein-mediated trafficking that can regulate the cytoskeletal association of dynamic organelles.


Journal of Biological Chemistry | 2008

Regulation of Dynactin through the Differential Expression of p150Glued Isoforms

Ram Dixit; Jennifer R. Levy; Mariko Tokito; Lee A. Ligon; Erika L. F. Holzbaur

Cytoplasmic dynein and dynactin interact to drive microtubule-based transport in the cell. The p150Glued subunit of dynactin binds to dynein, and directly to microtubules. We have identified alternatively spliced isoforms of p150Glued that are expressed in a tissue-specific manner and which differ significantly in their affinity for microtubules. Live cell assays indicate that these alternatively spliced isoforms also differ significantly in their microtubule plus end-tracking activity, suggesting a mechanism by which the cell may regulate the dynamic localization of dynactin. To test the function of the microtubule-binding domain of p150Glued, we used RNAi to deplete the endogenous polypeptide from HeLa cells, followed by rescue with constructs encoding either the full-length polypeptide or an isoform lacking the microtubule-binding domain. Both constructs fully rescued defects in Golgi morphology induced by depletion of p150Glued, indicating that an independent microtubule-binding site in dynactin may not be required for dynactin-mediated trafficking in some mammalian cell types. In neurons, however, a mutation within the microtubule-binding domain of p150Glued results in motor neuron disease; here we investigate the effects of four other mutations in highly conserved domains of the polypeptide (M571T, R785W, R1101K, and T1249I) associated in genetic studies with Amyotrophic Lateral Sclerosis. Both biochemical and cellular assays reveal that these amino acid substitutions do not result in functional differences, suggesting that these sequence changes are either allelic variants or contributory risk factors rather than causative for motor neuron disease. Together, these studies provide further insight into the regulation of dynein-dynactin function in the cell.


Journal of Biological Chemistry | 1997

CASEIN KINASE II BINDS TO AND PHOSPHORYLATES CYTOPLASMIC DYNEIN

Mariko Tokito; Erika L.F. Holzbaur

We have isolated a 27-kDa protein that binds to cytoplasmic dynein. Microsequencing of a 17-amino acid peptide of this polypeptide yielded a sequence which completely matched the predicted sequence of the β subunit of casein kinase II, a highly conserved serine/threonine kinase. Affinity chromatography using a dynein column indicates that both the α and β subunits of casein kinase II are retained by the column from rat brain cytosol. Although dynactin is also bound to the column, casein kinase II is not a dynactin subunit. Casein kinase II does not co-immunoprecipitate with dynactin, and it binds to a dynein intermediate chain column which has been preblocked with excess p150Glued, a treatment that inhibits the binding of dynactin from cytosol. Bacterially expressed and purified rat dynein intermediate chain can be phosphorylated by casein kinase II in vitro. Further, native cytoplasmic dynein purified from rat brain can also be phosphorylated by casein kinase II in vitro. We propose that CKII may be involved in the regulation of dynein function possibly by altering its cargo specificity or its ability to interact with dynactin.

Collaboration


Dive into the Mariko Tokito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee A. Ligon

University of California

View shared research outputs
Top Co-Authors

Avatar

Jacob E. Lazarus

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Fevzi Daldal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam G. Hendricks

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer L. Ross

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge