Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marilena Di Valentin is active.

Publication


Featured researches published by Marilena Di Valentin.


Plant Physiology | 2009

Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures

Roberto De Michele; Emanuela Vurro; Chiara Rigo; Alex Costa; Lisa Elviri; Marilena Di Valentin; Maria Careri; Michela Zottini; Luigi Sanità di Toppi; Fiorella Lo Schiavo

Exposure to cadmium (Cd2+) can result in cell death, but the molecular mechanisms of Cd2+ cytotoxicity in plants are not fully understood. Here, we show that Arabidopsis (Arabidopsis thaliana) cell suspension cultures underwent a process of programmed cell death when exposed to 100 and 150 μm CdCl2 and that this process resembled an accelerated senescence, as suggested by the expression of the marker senescence-associated gene12 (SAG12). CdCl2 treatment was accompanied by a rapid increase in nitric oxide (NO) and phytochelatin synthesis, which continued to be high as long as cells remained viable. Hydrogen peroxide production was a later event and preceded the rise of cell death by about 24 h. Inhibition of NO synthesis by NG-monomethyl-arginine monoacetate resulted in partial prevention of hydrogen peroxide increase, SAG12 expression, and mortality, indicating that NO is actually required for Cd2+-induced cell death. NO also modulated the extent of phytochelatin content, and possibly their function, by S-nitrosylation. These results shed light on the signaling events controlling Cd2+ cytotoxicity in plants.


Journal of the American Chemical Society | 2009

Water Oxidation at a Tetraruthenate Core Stabilized by Polyoxometalate Ligands: Experimental and Computational Evidence To Trace the Competent Intermediates

Andrea Sartorel; Pere Miró; Enrico Salvadori; Sophie Romain; Mauro Carraro; Gianfranco Scorrano; Marilena Di Valentin; Antoni Llobet; Carles Bo; Marcella Bonchio

Converging UV-vis, EPR, rRaman, and DFT calculations highlight the evolution of [Ru(4)(H(2)O)(4)(mu-O)(4)(mu-OH)(2)(gamma-SiW(10)O(36))(2)](10-), 1, to high-valent intermediates. In analogy with the natural enzyme, five different oxidation states, generated from 1, have been found to power the catalytic cycle for water oxidation. A high electrophilic tetraruthenium(V)-hydroxo species is envisaged as the competent intermediate, undergoing nucleophilic attack by an external water molecule as a key step in the formation of a new O-O bond under catalytic conditions.


Chemical Communications | 2013

Light driven water oxidation by a single site cobalt salophen catalyst

Erica Pizzolato; Mirco Natali; Bianca Posocco; Alejandro Montellano López; Irene Bazzan; Marilena Di Valentin; Pierluca Galloni; Valeria Conte; Marcella Bonchio; Franco Scandola; Andrea Sartorel

A salophen cobalt(II) complex enables water oxidation at neutral pH in photoactivated sacrificial cycles under visible light, thus confirming the high appeal of earth abundant single site catalysis for artificial photosynthesis.


Current Opinion in Chemical Biology | 1998

Manganese and tyrosyl radical function in photosynthetic oxygen evolution

Cecilia Tommos; Curtis W. Hoganson; Marilena Di Valentin; Nikos Lydakis-Simantiris; Pierre Dorlet; Kristi Westphal; Hsiu-An Chu; John McCracken; Gerald T. Babcock

Photosystem II catalyzes the photosynthetic oxidation of water to O2. The structural and functional basis for this remarkable process is emerging. The catalytic site contains a tetramanganese cluster, calcium, chloride and a redox-active tyrosine organized so as to promote electroneutral hydrogen atom abstraction from manganese-bound substrate water by the tyrosyl radical. Recent work is assessed within the framework of this model for the water oxidizing process.


Biochimica et Biophysica Acta | 2008

Pulse ENDOR and density functional theory on the peridinin triplet state involved in the photo-protective mechanism in the peridinin–chlorophyll a–protein from Amphidinium carterae

Marilena Di Valentin; Stefano Ceola; Giancarlo Agostini; Giorgio M. Giacometti; Alexander Angerhofer; Orlando Crescenzi; Vincenzo Barone; Donatella Carbonera

The photoexcited triplet state of the carotenoid peridinin in the Peridinin-chlorophyll a-protein of the dinoflagellate Amphidinium carterae has been investigated by pulse EPR and pulse ENDOR spectroscopies at variable temperatures. This is the first time that the ENDOR spectra of a carotenoid triplet in a naturally occurring light-harvesting complex, populated by energy transfer from the chlorophyll a triplet state, have been reported. From the electron spin echo experiments we have obtained the information on the electron spin polarization dynamics and from Mims ENDOR experiments we have derived the triplet state hyperfine couplings of the alpha- and beta-protons of the peridinin conjugated chain. Assignments of beta-protons belonging to two different methyl groups, with aiso=7.0 MHz and aiso=10.6 MHz respectively, have been made by comparison with the values predicted from density functional theory. Calculations provide a complete picture of the triplet spin density on the peridinin molecule, showing that the triplet spins are delocalized over the whole pi-conjugated system with an alternate pattern, which is lost in the central region of the polyene chain. The ENDOR investigation strongly supports the hypothesis of localization of the triplet state on one peridinin in each subcluster of the PCP complex, as proposed in [Di Valentin et al. Biochim. Biophys. Acta 1777 (2008) 186-195]. High spin density has been found specifically at the carbon atom at position 12 (see Fig. 1B), which for the peridinin involved in the photo-protective mechanism is in close contact with the water ligand to the chlorophyll a pigment. We suggest that this ligated water molecule, placed at the interface between the chlorophyll-peridinin pair, is functioning as a bridge in the triplet-triplet energy transfer between the two pigments.


Biochimica et Biophysica Acta | 2012

The [4Fe-4S]-cluster coordination of [FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE spectroscopies.

Paola Berto; Marilena Di Valentin; Laura Cendron; Francesca Vallese; Marco Albertini; Enrico Salvadori; Giorgio M. Giacometti; Donatella Carbonera; Paola Costantini

[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe-4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe-4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron-sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx(46-53)HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.


Plant Physiology | 2009

Auxin-Responsive Genes AIR12 Code for a New Family of Plasma Membrane b-Type Cytochromes Specific to Flowering Plants

Valeria Preger; Nunzio Tango; Christophe Marchand; Stéphane D. Lemaire; Donatella Carbonera; Marilena Di Valentin; Alex Costa; Paolo Pupillo; Paolo Trost

We report here on the identification of the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis (Arabidopsis thaliana) AIR12 (for auxin induced in root cultures). Soybean AIR12, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol modification signal and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON (for dopamine β-monooxygenase N terminus) domain superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, fully reduced by ascorbate, and fully oxidized by monodehydroascorbate radical. AIR12 is a high-potential cytochrome b showing a wide bimodal dependence from the redox potential between +80 mV and +300 mV. Optical absorption and electron paramagnetic resonance analysis indicate that AIR12 binds a single, highly axial low-spin heme, likely coordinated by methionine-91 and histidine-76, which are strongly conserved in AIR12 sequences. Phylogenetic analyses reveal that the auxin-responsive genes AIR12 represent a new family of PM b-type cytochromes specific to flowering plants. Circumstantial evidence suggests that AIR12 may interact with other redox partners within the PM to constitute a redox link between cytoplasm and apoplast.


Biophysical Journal | 2003

The Effect of Protein Conformational Flexibility on the Electronic Properties of a Chromophore

Riccardo Spezia; Massimiliano Aschi; Alfredo Di Nola; Marilena Di Valentin; Donatella Carbonera; Andrea Amadei

In this paper we address the question of how a protein environment can modulate the absorption spectrum of a chromophore during a molecular dynamics simulation. The effect of the protein is modeled as an external field acting on the unperturbed eigenstates of the chromophore. Using a first-principles method recently developed in our group, we calculated the perturbed electronic energies for each frame and the corresponding wavelength absorption during the simulation. We apply this method to a nanosencond timescale molecular dynamics simulation of the light-harvesting peridinin-chlorophyll-protein complex from Amphidinium carterae, where chlorophyll was selected among the chromophores of the complex for the calculation. The combination of this quantum-classical calculation with the analysis of the large amplitude motions of the protein makes it possible to point out the relationship between the conformational flexibility of the environment and the excitation wavelength of the chromophore. Results support the idea of the existence of a correlation between protein conformational flexibility and chlorophyll electronic transitions induced by light.


Biochimica et Biophysica Acta | 2010

Triplet–triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies

Marilena Di Valentin; Enrico Salvadori; Giancarlo Agostini; Federico Biasibetti; Stefano Ceola; Roger G. Hiller; Giorgio M. Giacometti; Donatella Carbonera

We present an optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopic study on the quenching of photo-induced chlorophyll triplet states by carotenoids, in the intrinsic light-harvesting complex (LHC) from the dinoflagellate Amphidinium carterae. Two carotenoid triplet states, differing in terms of optical and magnetic spectroscopic properties, have been identified and assigned to peridinins located in different protein environment. The results reveal a parallelism with the triplet-triplet energy transfer (TTET) process involving chlorophyll a and luteins observed in the LHC-II complex of higher plants. Starting from the hypothesis of a conserved alignment of the amino acid sequences at the cores of the LHC and LHC-II proteins, the spin-polarized time-resolved EPR spectra of the carotenoid triplet states of LHC have been calculated by a method which exploits the conservation of the spin momentum during the TTET process. The analysis of the spectra shows that the data are compatible with a structural model of the core of LHC which assigns the photo-protective function to two central carotenoids surrounded by the majority of Chl a molecules present in the protein, as found in LHC-II. However, the lack of structural data, and the uncertainty in the pigment composition of LHC, leaves open the possibility that this complex posses a different arrangement of the pigments with specific centers of Chl triplet quenching.


Journal of the American Chemical Society | 2014

Porphyrin Triplet State as a Potential Spin Label for Nanometer Distance Measurements by PELDOR Spectroscopy

Marilena Di Valentin; Marco Albertini; Enrico Zurlo; Marina Gobbo; Donatella Carbonera

This work demonstrates, for the first time, the feasibility of applying pulsed electron-electron double resonance (PELDOR/DEER) to determine the interspin distance between a photoexcited porphyrin triplet state (S = 1) and a nitroxide spin label chemically incorporated into a small helical peptide. The PELDOR trace shows deep envelope modulation induced by electron-electron dipole interaction between the partners in the pair, providing an accurate distance measurement. This new labeling approach has a high potential for measuring nanometer distances in more complex biological systems due to the sensitivity acquired from the spin polarization of the photoexcited triplet state spectrum.

Collaboration


Dive into the Marilena Di Valentin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Salvadori

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge