Marilène Paquet
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marilène Paquet.
Nature Genetics | 2007
Sofi G. Julien; Nadia Dubé; Michelle Read; Janice Penney; Marilène Paquet; Yongxin Han; Brian P. Kennedy; William Muller; Michel L. Tremblay
We investigated the role of protein tyrosine phosphatase 1B (PTP1B) in mammary tumorigenesis using both genetic and pharmacological approaches. It has been previously shown that transgenic mice with a deletion mutation in the region of Erbb2 encoding its extracellular domain (referred to as NDL2 mice, for Neu deletion in extracellular domain 2) develop mammary tumors that progress to lung metastasis. However, deletion of PTP1B activity in the NDL2 transgenic mice either by breeding with Ptpn1-deficient mice or by treatment with a specific PTP1B inhibitor results in significant mammary tumor latency and resistance to lung metastasis. In contrast, specific overexpression of PTP1B in the mammary gland leads to spontaneous breast cancer development. The regulation of ErbB2-induced mammary tumorigenesis by PTB1B occurs through the attenuation of both the MAP kinase (MAPK) and Akt pathways. This report provides a rationale for the development of PTP1B as a new therapeutic target in breast cancer.
Developmental Biology | 2009
Rodrigo Fernandez-Valdivia; Atish Mukherjee; Yan Ying; Jie Li; Marilène Paquet; Francesco J. DeMayo; John P. Lydon
Receptor of Activated NF-kappaB Ligand (RANKL) is implicated as one of a number of effector molecules that mediate progesterone and prolactin signaling in the murine mammary epithelium. Using a mouse transgenic approach, we demonstrate that installation of the RANKL signaling axis into the mammary epithelium results in precocious ductal side-branching and alveologenesis in the virgin animal. These morphological changes occur due to RANKL-induced mammary epithelial proliferation, which is accompanied by increases in expression of activated NF-kB and cyclin D1. With age, prolonged RANKL exposure elicits limited mammary epithelial hyperplasia. While these transgenics exhibit RANKL-induced salivary gland adenocarcinomas, palpable mammary tumors are not observed due to RANKL-suppression of its own signaling receptor (RANK) in the mammary epithelium. Together, these studies reveal not only that the RANKL signaling axis can program many of the normal epithelial changes attributed to progesterone and prolactin action in the normal mammary gland during early pregnancy, but underscore the necessity for tight control of this signaling molecule to avoid unwarranted developmental changes that could lead to mammary hyperplasia in later life.
Genes & Development | 2013
Abba Malina; John R. Mills; Regina Cencic; Yifei Yan; James Fraser; Laura M. Schippers; Marilène Paquet; Josée Dostie; Jerry Pelletier
RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel all-in-one lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an all-in-one system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens.
Journal of Medical Genetics | 2010
Valérie Hudon; Sylvie Sabourin; Anders Bondo Dydensborg; Vasiliki Kottis; Abbas Ghazi; Marilène Paquet; Kathie Crosby; Véronique Pomerleau; Norico Uetani; Arnim Pause
Background Renal cell carcinoma (RCC) comprises five major molecular and histological subtypes. The Birt–Hogg–Dubé (BHD) syndrome is a hereditary human cancer syndrome that predisposes affected individuals to develop renal carcinoma of nearly all subtypes, in addition to benign fibrofolliculomas, and pulmonary and renal cysts. BHD is caused by loss-of-function mutations in the folliculin (FLCN) protein. The molecular function of FLCN is still largely unknown; opposite and conflicting evidence of the role of FLCN in mammalian target of rapamycin signalling/phosphorylated ribosomal protein S6 (p-S6) activation had recently been reported. Results and Methods Here, the expression pattern of murine Flcn was described, and it was observed that homozygous disruption of Flcn results in embryonic lethality early during development. Importantly, heterozygous animals manifest early preneoplastic kidney lesions, devoid of Flcn expression, that progress towards malignancy, including cystopapillary adenomas. A bona fide tumour suppressor activity of FLCN was confirmed by nude mouse xenograft assays of two human RCC cell lines with either diminished or re-expressed FLCN. It was observed that loss of FLCN expression leads to context-dependent effects on S6 activation. Indeed, solid tumours and normal kidneys show decreased p-S6 upon diminished FLCN expression. Conversely, p-S6 is found to be elevated or absent in FLCN-negative renal cysts. Conclusion In accordance with clinical data showing distinct renal malignancies arising in BHD patients, in this study FLCN is shown as a general tumour suppressor in the kidney.
Cancer Cell | 2009
Emmanuel Petroulakis; Armen Parsyan; Ryan J.O. Dowling; Olivier LeBacquer; Yvan Martineau; Michael Bidinosti; Ola Larsson; Tommy Alain; Liwei Rong; Yael Mamane; Marilène Paquet; Luc Furic; Ivan Topisirovic; David Shahbazian; Mark Livingstone; Mauro Costa-Mattioli; Jose G. Teodoro; Nahum Sonenberg
eIF4E, the mRNA 5 cap-binding translation initiation factor, is overexpressed in numerous cancers and is implicated in mechanisms underlying oncogenesis and senescence. 4E-BPs (eIF4E-binding proteins) inhibit eIF4E activity, and thereby act as suppressors of eIF4E-dependent pathways. Here, we show that tumorigenesis is increased in p53 knockout mice that lack 4E-BP1 and 4E-BP2. However, primary fibroblasts lacking 4E-BPs, but expressing p53, undergo premature senescence and resist oncogene-driven transformation. Thus, the p53 status governs 4E-BP-dependent senescence and transformation. Intriguingly, the 4E-BPs engage in senescence via translational control of the p53-stabilizing protein, Gas2. Our data demonstrate a role for 4E-BPs in senescence and tumorigenesis and highlight a p53-mediated mechanism of senescence through a 4E-BP-dependent pathway.
Biology of Reproduction | 2008
Alexandre Boyer; Louis Hermo; Marilène Paquet; Bernard Robaire; Derek Boerboom
Abstract WNT/CTNNB1 signaling is involved in the regulation of multiple embryonic developmental processes, adult tissue homeostasis, abd cell fate determination and differentiation. Many WNTs and components of the WNT/CTNNB1 signaling pathway are expressed in the testis, but their physiological roles in this organ are largely unknown. To elucidate the role(s) of WNT/CTNNB1 signaling in the testis, transgenic Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice were generated to obtain sustained activation of the WNT/CTNNB1 pathway in both Leydig and Sertoli cells. Male Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice were sterile because of testicular atrophy starting at 5 wk of age, associated with degeneration of seminiferous tubules and the progressive loss of germ cells. Although Cre activity was expected in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ Leydig cells, no evidence of Cre-mediated recombination of the floxed allele or of WNT/CTNNB1 pathway activation could be obtained, and testosterone levels were comparable to age-matched controls, suggesting that genetic recombination was inefficient in Leydig cells. Conversely, sustained WNT/CTNNB1 pathway activation was obtained in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ Sertoli cells. The latter often exhibited morphological characteristics suggestive of incomplete differentiation that appeared in a manner coincident with germ cell loss, and this was accompanied by an increase in the expression of the immature Sertoli cell marker AMH. In addition, a poorly differentiated, WT1-positive somatic cell population accumulated in multilayered foci near the basement membrane of many seminiferous tubules. Together, these data suggest that the WNT/CTNNB1 pathway regulates Sertoli cell functions critical to their capacity to support spermatogenesis in the postnatal testis.
Cancer Research | 2009
Heng-Yu Fan; Zhilin Liu; Marilène Paquet; Jinrong Wang; John P. Lydon; Francesco J. DeMayo; JoAnne S. Richards
The small G-protein KRAS is crucial for mediating gonadotropin-induced events associated with ovulation. However, constitutive expression of KrasG12D in granulosa cells disrupted normal follicle development leading to the persistence of abnormal follicle-like structures containing nonmitotic cells. To determine what factors mediate this potent effect of KrasG12D, gene profiling analyses were done. We also analyzed KrasG12D;Cyp19-Cre and KrasG12;Pgr-Cre mutant mouse models that express Cre prior to or after the initiation of granulosa cell differentiation, respectively. KrasG12D induced cell cycle arrest in granulosa cells of the KrasG12D;Cyp19-Cre mice but not in the KrasG12D;Pgr-Cre mice, documenting the cell context-specific effect of KrasG12D. Expression of KrasG12D silenced the Kras gene, reduced cell cycle activator genes, and impaired the expression of granulosa cell and oocyte-specific genes. Conversely, levels of PTEN and phosphorylated p38 mitogen-activated protein kinase (MAPK) increased markedly in the mutant granulosa cells. Because disrupting Pten in granulosa cells leads to increased proliferation and survival, Pten was disrupted in the KrasG12D mutant mice. The Pten/Kras mutant mice were infertile but lacked granulosa cell tumors. By contrast, the Ptenfl/fl;KrasG12D;Amhr2-Cre mice developed aggressive ovarian surface epithelial cell tumors that did not occur in the Ptenfl/fl;KrasG12D;Cyp19-Cre or Ptenfl/fl;KrasG12D;Pgr-Cre mouse strains. These data document unequivocally that Amhr2-Cre is expressed in and mediates allelic recombination of oncogenic genes in ovarian surface epithelial cells. That KrasG12D/Pten mutant granulosa cells do not transform but rather undergo cell cycle arrest indicates that they resist the oncogenic insults of Kras/Pten by robust self-protecting mechanisms that silence the Kras gene and elevate PTEN and phosphorylated p38 MAPK.
Carcinogenesis | 2008
Marie-Noëlle Laguë; Marilène Paquet; Heng-Yu Fan; M. Johanna Kaartinen; Simon Chu; Soazik P. Jamin; Richard R. Behringer; Peter J. Fuller; Andrew Mitchell; Monique Doré; Louis Huneault; JoAnne S. Richards; Derek Boerboom
The mechanisms of granulosa cell tumor (GCT) development may involve the dysregulation of signaling pathways downstream of follicle-stimulating hormone, including the phosphoinosite-3 kinase (PI3K)/AKT pathway. To test this hypothesis, a genetically engineered mouse model was created to derepress the PI3K/AKT pathway in granulosa cells by conditional targeting of the PI3K antagonist gene Pten (Pten(flox/flox);Amhr2(cre/+)). The majority of Pten(flox/flox);Amhr2(cre/+) mice featured no ovarian anomalies, but occasionally ( approximately 7%) developed aggressive, anaplastic GCT with pulmonary metastases. The expression of the PI3K/AKT downstream effector FOXO1 was abrogated in Pten(flox/flox);Amhr2(cre/+) GCT, indicating a mechanism by which GCT cells may increase proliferation and evade apoptosis. To relate these findings to spontaneously occurring GCT, analyses of PTEN and phospho-AKT expression were performed on human and equine tumors. Although PTEN loss was not detected, many GCT (2/5 human, 7/17 equine) featured abnormal nuclear or perinuclear localization of phospho-AKT, suggestive of altered PI3K/AKT activity. As inappropriate activation of WNT/CTNNB1 signaling causes late-onset GCT development and cross talk between the PI3K/AKT and WNT/CTNNB1 pathways has been reported, we tested whether these pathways could synergize in GCT. Activation of both the PI3K/AKT and WNT/CTNNB1 pathways in the granulosa cells of a mouse model (Pten(flox/flox);Ctnnb1(flox(ex3)/+);Amhr2(cre/+)) resulted in the development of GCT similar to those observed in Pten(flox/flox);Amhr2(cre/+) mice, but with 100% penetrance, perinatal onset, extremely rapid growth and the ability to spread by seeding into the abdominal cavity. These data indicate a synergistic effect of dysregulated PI3K/AKT and WNT/CTNNB1 signaling in the development and progression of GCT and provide the first animal models for metastatic GCT.
PLOS Pathogens | 2013
Marie-Line Goulet; David Olagnier; Zheng-Yun Xu; Suzanne Paz; S. Mehdi Belgnaoui; Erin I. Lafferty; Valérie Janelle; Meztli Arguello; Marilène Paquet; Khader Ghneim; Stephanie Richards; Andrew Smith; Peter Wilkinson; Mark J. Cameron; Ulrich Kalinke; Salman T. Qureshi; Alain Lamarre; Elias K. Haddad; Rafick Pierre Sekaly; Suraj Peri; Siddharth Balachandran; Rongtuan Lin; John Hiscott
The RIG-I like receptor pathway is stimulated during RNA virus infection by interaction between cytosolic RIG-I and viral RNA structures that contain short hairpin dsRNA and 5′ triphosphate (5′ppp) terminal structure. In the present study, an RNA agonist of RIG-I was synthesized in vitro and shown to stimulate RIG-I-dependent antiviral responses at concentrations in the picomolar range. In human lung epithelial A549 cells, 5′pppRNA specifically stimulated multiple parameters of the innate antiviral response, including IRF3, IRF7 and STAT1 activation, and induction of inflammatory and interferon stimulated genes - hallmarks of a fully functional antiviral response. Evaluation of the magnitude and duration of gene expression by transcriptional profiling identified a robust, sustained and diversified antiviral and inflammatory response characterized by enhanced pathogen recognition and interferon (IFN) signaling. Bioinformatics analysis further identified a transcriptional signature uniquely induced by 5′pppRNA, and not by IFNα-2b, that included a constellation of IRF7 and NF-kB target genes capable of mobilizing multiple arms of the innate and adaptive immune response. Treatment of primary PBMCs or lung epithelial A549 cells with 5′pppRNA provided significant protection against a spectrum of RNA and DNA viruses. In C57Bl/6 mice, intravenous administration of 5′pppRNA protected animals from a lethal challenge with H1N1 Influenza, reduced virus titers in mouse lungs and protected animals from virus-induced pneumonia. Strikingly, the RIG-I-specific transcriptional response afforded partial protection from influenza challenge, even in the absence of type I interferon signaling. This systems approach provides transcriptional, biochemical, and in vivo analysis of the antiviral efficacy of 5′pppRNA and highlights the therapeutic potential associated with the use of RIG-I agonists as broad spectrum antiviral agents.
Carcinogenesis | 2009
Alexandre Boyer; Marilène Paquet; Marie-Noëlle Laguë; Louis Hermo; Derek Boerboom
Synergistic effects of dysregulation of the WNT/CTNNB1 and phosphatidylinositol 3-kinase (PI3K)/AKT pathways are thought to be important for the development and progression of many forms of cancer, including the granulosa cell tumor of the ovary. Sustained WNT/CTNNB1 signaling in Sertoli cells causes testicular degeneration and the formation of foci of poorly differentiated stromal cells in the seminiferous tubules in mice. To test if concomitant dysregulation of the WNT/CTNNB1 and PI3K/AKT pathways could synergize to cause testicular cancer, Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) mice that express a dominant, stable CTNNB1 mutant and lack the expression of phosphatase and tensin homolog (PTEN) in their Sertoli cells were generated. These mice developed aggressive testicular cancer with 100% penetrance by 5 weeks of age, and 44% of animals developed pulmonary metastases by 4 months, whereas Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) controls were phenotypically normal. Surprisingly, the tumors could not be classified as Sertoli cell tumors, but rather bore histologic and ultrastructural characteristics of granulosa cell tumors of the testis (GCTT). Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) testicular tumors did not express CYP17, CYP19, germ cell nuclear antigen, estrogen receptor 1 or progesterone receptor, but expressed the early granulosa cell markers WNT4 and FOXL2, confirming the diagnosis of GCTT. Immunohistochemical analyses of Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) GCTT demonstrated a tumor marker profile similar to that reported in human GCTT. Immunoblotting analyses revealed high levels of phosphorylation of AKT and the PI3K/AKT signaling effector FOXO1A in Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) GCTT, suggesting the involvement of FOXO1A in the mechanism of GCTT development. Together, these data provide the first insights into the molecular etiology of GCTT and the first animal model for the study of GCTT biology.