Marilia J. Caldas
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marilia J. Caldas.
Applied Physics Letters | 1984
Marilia J. Caldas; A. Fazzio; Alex Zunger
Whereas the conventional practice of referring binding energies of deep donors and acceptors to the band edges of the host semiconductor does not produce transparent chemical trends when the same impurity is compared in different crystals, referring them to the vacuum level through the use of the photothreshold reveals a remarkable material invariance of the levels in III‐V and II‐VI semiconductors. It is shown that this is a consequence of the antibonding nature of the deep gap level with respect to the impurity atom‐host orbital combinations.
Physical Review Letters | 2002
Alice Ruini; Marilia J. Caldas; Giovanni Bussi; Elisa Molinari
We perform ab initio calculations of optical properties for a typical semiconductor conjugated polymer, poly-para-phenylenevinylene, in both isolated chain and crystalline packing. In order to obtain results for excitonic energies and real-space wave functions we explicitly include electron-hole interaction within the density-matrix formalism. We find that the details of crystalline arrangement crucially affect the optical properties, leading to a richer exciton structure and opening nonradiative decay channels. This has implications for the optical activity and optoelectronic applications of polymer films.
Solid State Communications | 1997
R.J. Baierle; Marilia J. Caldas; Elisa Molinari; Stefano Ossicini
The optical properties of hydrogen-saturated Si clusters are studied theoretically through an approach that can treat consistently both small molecules and bulk crystals and fully includes electron-electron correlation. We find that optical spectra in the ground state cannot explain the observed luminescence of porous Si for the small particle sizes consistent with structural data. However, the same clusters in their excited state relax to locally distorted equilibrium configurations, giving rise to new transitions involving localized states that lower the emission threshold. These results allow to reconcile absorption and luminescence experiments with no need to invoke extrinsic effects.
Applied Physics Letters | 2002
Giovanni Bussi; Alice Ruini; Elisa Molinari; Marilia J. Caldas; Peter Puschnig; Claudia Ambrosch-Draxl
The crystal-induced energy splitting of the lowest excitonic state in polymer crystals, the so-called Davydov splitting Δ, is calculated with a first-principles density-matrix scheme. We show that different crystalline arrangements lead to significant variations in Δ, from below to above the thermal energy k B T at room temperature, with relevant implications on the luminescence efficiency. This is one more piece of evidence supporting the fact that control of interchain interactions and solid-state packing is essential for the design of efficient optical devices.
Journal of Computational Chemistry | 2002
Liliana Y. A. Dávila; Marilia J. Caldas
Semiempirical Hartree‐Fock techniques are widely used to study properties of long ring‐structured chains, although these types of systems were not included in the original parametrization ensembles. These techniques are very useful for an ample class of studies, and their predictive power should be tested. We present here a study of the applicability of some techniques from the NDDO family (MNDO, AM1, and PM3) to the calculation of the ground state geometries of a specific set of molecules with the ring‐structure characteristic. For this we have chosen to compare results against ab initio Restricted Hartree‐Fock 6‐31G(d,p) calculations, extended to Møller‐Plesset 2 perturbation theory for special cases. The systems investigated comprise the orthobenzoquinone (O2C6H4) molecule and dimers (O2C6H4)2, as well as trimers of polyaniline, which present characteristics that extend to several systems of interest in the field of conducting polymers, such as ring structure and heterosubstitution. We focus on the torsion between rings, because this angle is known to affect strongly the electronic and optical properties of conjugated polymers. We find that AM1 is always in qualitative agreement with the ab initio results, and is thus indicated for further studies of longer, more complicated chains.
Journal of Physical Chemistry C | 2012
Caterina Cocchi; Deborah Prezzi; Alice Ruini; Marilia J. Caldas; Elisa Molinari
The effects of edge covalent functionalization on the structural, electronic, and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the framework of Hartree–Fock-based semiempirical methods. The chemical features of the functional groups, their distribution, and the resulting system symmetry are identified as the key factors that determine the modification of strutural and optoelectronic features. While the electronic gap is always reduced in the presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35–55%. This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge–substituent bond are found to influence the strength and the character of the low-energy excitations. All of these effects are discussed for flakes of different wi...
Journal of Physical Chemistry Letters | 2011
Caterina Cocchi; Deborah Prezzi; Alice Ruini; Marilia J. Caldas; Elisa Molinari
We investigate the optical properties of edge-functionalized graphene nanosystems, focusing on the formation of junctions and charge-transfer excitons. We consider a class of graphene structures that combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low-energy excitations with remarkable charge-transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.
Journal of Physical Chemistry Letters | 2012
Caterina Cocchi; Deborah Prezzi; Alice Ruini; Enrico Benassi; Marilia J. Caldas; Stefano Corni; Elisa Molinari
The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.
Journal of Physical Chemistry C | 2011
Caterina Cocchi; Alice Ruini; Deborah Prezzi; Marilia J. Caldas; Elisa Molinari
We investigated theoretically the effect of covalent edge functionalization, with organic functional groups, on the electronic properties of graphene nanostructures and nanojunctions. Our analysis shows that functionalization can be designed to tune electron affinities and ionization potentials of graphene flakes, and to control the energy alignment of frontier orbitals in nanometer-wide graphene junctions. The stability of the proposed mechanism is discussed with respect to the functional groups, their number as well as the width of graphene nanostructures. The results of our work indicate that different level alignments can be obtained and engineered in order to realize stable all-graphene nanodevices.
Physical Review B | 2006
Arrigo Calzolari; Alice Ruini; Elisa Molinari; Marilia J. Caldas
We present an ab initio study of the structural and electronic properties of styrene molecules adsorbed on the dimerized Si(100) surface at different coverages, ranging from the single-molecule to the full monolayer. The adsorption mechanism primarily involves the vinyl group via a [2+2] cycloaddition process that leads to the formation of covalent Si-C bonds and a local surface derelaxation, while it leaves the phenyl group almost unperturbed. The investigation of the functionalized surface as a function of the coverage (e.g. 0.5 -- 1 ML) and of the substrate reconstruction reveals two major effects. The first results from Si dimer-vinyl interaction and concerns the controlled variation of the energy bandgap of the interface. The second is associated to phenyl-phenyl interactions, which gives rise to a regular pattern of electronic wires at surface, stemming from the pi-pi coupling. These findings suggest a rationale for tailoring the surface nano-patterning of the surface, in a controlled way.