Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marily Theodoropoulou is active.

Publication


Featured researches published by Marily Theodoropoulou.


Nature Genetics | 2015

Mutations in the deubiquitinase gene USP8 cause Cushing's disease

Martin Reincke; Silviu Sbiera; Akira Hayakawa; Marily Theodoropoulou; Andrea Osswald; Felix Beuschlein; Thomas Meitinger; Emi Mizuno-Yamasaki; Kohei Kawaguchi; Yasushi Saeki; Keiji Tanaka; Thomas Wieland; Elisabeth Graf; Wolfgang Saeger; Cristina L. Ronchi; Bruno Allolio; Michael Buchfelder; Tim M. Strom; Martin Fassnacht; Masayuki Komada

Cushings disease is caused by corticotroph adenomas of the pituitary. To explore the molecular mechanisms of endocrine autonomy in these tumors, we performed exome sequencing of 10 corticotroph adenomas. We found somatic mutations in the USP8 deubiquitinase gene in 4 of 10 adenomas. The mutations clustered in the 14-3-3 protein binding motif and enhanced the proteolytic cleavage and catalytic activity of USP8. Cleavage of USP8 led to increased deubiqutination of the EGF receptor, impairing its downregulation and sustaining EGF signaling. USP8 mutants enhanced promoter activity of the gene encoding proopiomelanocortin. In summary, our data show that dominant mutations in USP8 cause Cushings disease via activation of EGF receptor signaling.


Journal of Clinical Investigation | 2001

Retinoic acid prevents experimental Cushing syndrome

Marcelo Paez-Pereda; Damian Kovalovsky; Ursula Hopfner; Marily Theodoropoulou; Uberto Pagotto; Eberhard Uhl; Marco Losa; Johanna Stalla; Yvonne Grübler; Cristina Missale; Eduardo Arzt; Günter K. Stalla

Cushing syndrome is caused by an excess of adrenocorticotropic hormone (ACTH) production by neuroendocrine tumors, which subsequently results in chronic glucocorticoid excess. We found that retinoic acid inhibits the transcriptional activity of AP-1 and the orphan receptors Nur77 and Nurr1 in ACTH-secreting tumor cells. Retinoic acid treatment resulted in reduced pro-opiomelanocortin transcription and ACTH production. ACTH inhibition was also observed in human pituitary ACTH-secreting tumor cells and a small-cell lung cancer cell line, but not in normal cells. This correlated with the expression of the orphan receptor COUP-TFI, which was found in normal corticotrophs but not in pituitary Cushing tumors. COUP-TFI expression in ACTH-secreting tumor cells blocked retinoic acid action. Retinoic acid also inhibited cell proliferation and, after prolonged treatment, increased caspase-3 activity and induced cell death in ACTH-secreting cells. In adrenal cortex cells, retinoic acid inhibited corticosterone production and cell proliferation. The antiproliferative action and the inhibition of ACTH and corticosterone produced by retinoic acid were confirmed in vivo in experimental ACTH-secreting tumors in nude mice. Thus, we conclude that the effects of retinoic acid combine in vivo to reverse the endocrine alterations and symptoms observed in experimental Cushing syndrome.


Cancer Research | 2006

Octreotide, a Somatostatin Analogue, Mediates Its Antiproliferative Action in Pituitary Tumor Cells by Altering Phosphatidylinositol 3-Kinase Signaling and Inducing Zac1 Expression

Marily Theodoropoulou; Jing Zhang; Sandra Laupheimer; Marcelo Paez-Pereda; Christophe Erneux; Tullio Florio; Uberto Pagotto; Günter K. Stalla

Somatostatin limits cell growth by inhibiting the proliferative activity of growth factor receptors. In this study, it is shown that in pituitary tumor cells, the somatostatin analogue octreotide produces its antiproliferative action by inducing the expression the tumor suppressor gene Zac1. ZAC/Zac1 induces cell cycle arrest and apoptosis and is highly expressed in normal pituitary, mammary, and ovarian glands but is down-regulated in pituitary, breast, and ovarian tumors. Knocking down Zac1 by RNA interference abolished the antiproliferative effect of octreotide in pituitary tumor cells, indicating that Zac1 is necessary for the action of octreotide. The effect of octreotide on Zac1 expression was pertussis toxin sensitive and was abolished after transfection with a dominant negative vector for SHP-1. Zac1 is a target of the phosphatidylinositol 3-kinase (PI3K) survival pathway. Octreotide treatment decreased the tyrosine phosphorylation levels of the PI3K regulatory subunit p85, induced dephosphorylation of phosphoinositide-dependent kinase 1 (PDK1) and Akt, and activated glycogen synthase kinase 3beta (GSKbeta). Therefore, in pituitary tumor cells, somatostatin analogues produce their antiproliferative action by acting on the PI3K/Akt signaling pathway and increasing Zac1 gene expression.


Frontiers in Neuroendocrinology | 2013

Somatostatin receptors: From signaling to clinical practice

Marily Theodoropoulou; Günter K. Stalla

Somatostatin is a peptide with a potent and broad antisecretory action, which makes it an invaluable drug target for the pharmacological management of pituitary adenomas and neuroendocrine tumors. Somatostatin receptors (SSTR1, 2A and B, 3, 4 and 5) belong to the G protein coupled receptor family and have a wide expression pattern in both normal tissues and solid tumors. Investigating the function of each SSTR in several tumor types has provided a wealth of information about the common but also distinct signaling cascades that suppress tumor cell proliferation, survival and angiogenesis. This provided the rationale for developing multireceptor-targeted somatostatin analogs and combination therapies with signaling-targeted agents such as inhibitors of the mammalian (or mechanistic) target of rapamycin (mTOR). The ability of SSTR to internalize and the development of rabiolabeled somatostatin analogs have improved the diagnosis and treatment of neuroendocrine tumors.


Endocrine-related Cancer | 2009

Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications

Marie Lise Jaffrain-Rea; M. Angelini; Donatella Gargano; Maria A. Tichomirowa; Adrian Daly; Jean François Vanbellinghen; Emanuela D'Innocenzo; Anne Barlier; Felice Giangaspero; Vincenzo Esposito; L. Ventura; Antonietta Arcella; Marily Theodoropoulou; Luciana A. Naves; Carmen Fajardo; Sabina Zacharieva; V. Rohmer; Thierry Brue; Alberto Gulino; Giampaolo Cantore; Edoardo Alesse; Albert Beckers

Germline mutations of the aryl hydrocarbon receptor (AHR)-interacting protein (AIP) gene confer a predisposition to pituitary adenomas (PA), usually in the setting of familial isolated PA. To provide further insights into the possible role of AIP in pituitary tumour pathogenesis, the expression of AIP and AHR was determined by real-time RT-PCR and/or immunohistochemistry (IHC) in a large series of PA (n=103), including 17 with AIP mutations (AIP(mut)). Variable levels of AIP and AHR transcripts were detected in all PA, with a low AHR expression (P<0.0001 versus AIP). Cytoplasmic AIP and AHR were detected by IHC in 84.0 and 38.6% of PA respectively, and significantly correlated with each other (P=0.006). Nuclear AHR was detected in a minority of PA (19.7%). The highest AIP expression was observed in somatotrophinomas and non-secreting (NS) PA, and multivariate analysis in somatotrophinomas showed a significantly lower AIP immunostaining in invasive versus non-invasive cases (P=0.019). AIP expression was commonly low in other secreting PA. AIP immunostaining was abolished in a minority of AIP(mut) PA, with a frequent loss of cytoplasmic AHR and no evidence of nuclear AHR. In contrast, AIP overexpression in a subset of NS PA could be accompanied by nuclear AHR immunopositivity. We conclude that down-regulation of AIP and AHR may be involved in the aggressiveness of somatotrophinomas. Overall, IHC is a poorly sensitive tool for the screening of AIP mutations. Data obtained on AHR expression suggest that AHR signalling may be differentially affected according to PA phenotype.


European Journal of Endocrinology | 2011

High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas

Maria A. Tichomirowa; Anne Barlier; Adrian Daly; Marie Lise Jaffrain-Rea; Cristina Ronchi; Maria Yaneva; Jonathan D. Urban; Patrick Petrossians; Atanaska Elenkova; Antoine Tabarin; R. Desailloud; Dominique Maiter; T. H. Schurmeyer; Renato Cozzi; Marily Theodoropoulou; Caroline Sievers; Ignacio Bernabeu; Luciana A. Naves; Olivier Chabre; Carmen Fajardo Montañana; Vaclav Hana; Georges Halaby; B. Delemer; José Ignacio Labarta Aizpún; E. Sonnet; Ángel Ferrández Longás; Marie Thérèse Hagelstein; Philippe Caron; Günter K. Stalla; Vincent Bours

BACKGROUND Aryl hydrocarbon receptor interacting protein (AIP) mutations (AIPmut) cause aggressive pituitary adenomas in young patients, usually in the setting of familial isolated pituitary adenomas. The prevalence of AIPmut among sporadic pituitary adenoma patients appears to be low; studies have not addressed prevalence in the most clinically relevant population. Hence, we undertook an international, multicenter, prospective genetic, and clinical analysis at 21 tertiary referral endocrine departments. METHODS We included 163 sporadic pituitary macroadenoma patients irrespective of clinical phenotype diagnosed at <30 years of age. RESULTS Overall, 19/163 (11.7%) patients had germline AIPmut; a further nine patients had sequence changes of uncertain significance or polymorphisms. AIPmut were identified in 8/39 (20.5%) pediatric patients. Ten AIPmut were identified in 11/83 (13.3%) sporadic somatotropinoma patients, in 7/61 (11.5%) prolactinoma patients, and in 1/16 non-functioning pituitary adenoma patients. Large genetic deletions were not seen using multiplex ligation-dependent probe amplification. Familial screening was possible in the relatives of seven patients with AIPmut and carriers were found in six of the seven families. In total, pituitary adenomas were diagnosed in 2/21 AIPmut-screened carriers; both had asymptomatic microadenomas. CONCLUSION Germline AIPmut occur in 11.7% of patients <30 years with sporadic pituitary macroadenomas and in 20.5% of pediatric patients. AIPmut mutation testing in this population should be considered in order to optimize clinical genetic investigation and management.


Cancer Research | 2010

Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis.

Cristian Bellodi; Olya Krasnykh; Nikesha Haynes; Marily Theodoropoulou; Guang Peng; Lorenzo Montanaro; Davide Ruggero

Mutations in DKC1, encoding for dyskerin, a pseudouridine synthase that modifies rRNA and regulates telomerase activity, are associated with ribosomal dysfunction and increased cancer susceptibility in the human syndrome, X-linked dyskeratosis congenita (X-DC). In a mouse model for X-DC, impairments in DKC1 function affected the translation of specific mRNAs harboring internal ribosomal entry site (IRES) elements, including the tumor suppressor, p27. However, how this translational deregulation contributes to tumor initiation and progression remains poorly understood. Here, we report that impairment in p27 IRES-mediated translation due to decreased levels of DKC1 activity markedly increases spontaneous pituitary tumorigenesis in p27 heterozygous mice. Using a new bioluminescent mouse model, we monitored p27 translation in vivo and show that p27 IRES-mediated translation is reduced in the pituitary of DKC1 hypomorphic mice (DKC1(m)). Furthermore, we show that DKC1 has a critical role in regulating the assembly of the 48S translational preinitiation complex mediated by the p27 IRES element. An analysis of human tumors identified a novel mutation of DKC1 (DKC1(S485G)) in a human pituitary adenoma. We show that this specific amino acid substitution significantly alters DKC1 stability/pseudouridylation activity, and this correlates with reductions in p27 protein levels. Furthermore, DKC1(S485G) mutation does not alter telomerase RNA levels. Altogether, these findings show that genetic alterations in DKC1 could contribute to tumorigenesis associated with somatic cancers and establish a critical role for DKC1 in tumor suppression, at least in part, through translational control of p27.


Endocrine-related Cancer | 2008

Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study

Tullio Florio; Federica Barbieri; Renato Spaziante; Gianluigi Zona; Leo J. Hofland; Peter M. van Koetsveld; Richard A. Feelders; Günter K. Stalla; Marily Theodoropoulou; Michael D. Culler; Jesse Z. Dong; John E. Taylor; Jacques-Pierre Moreau; Alexandru Saveanu; Ginette Gunz; Henry Dufour; Philippe Jaquet

Dopamine D2 and somatostatin receptors (sstrs) were reported to affect non-functioning pituitary adenoma (NFPA) proliferation in vitro. However, the reported results differ according to the experimental conditions used. We established an experimental protocol allowing reproducible evaluation of NFPA cell proliferation in vitro, to test and compare the antiproliferative effects of dopamine and somatostatin analogs (alone or in combination) with the activity of the dopamine-somatostatin chimeric molecule BIM-23A760. The protocol was utilized by four independent laboratories, studying 38 fibroblast-deprived NFPA cell cultures. Cells were characterized for GH, POMC, sstr1-sstr5, total dopamine D2 receptor (D2R) (in all cases), and D2 receptor long and short isoforms (in 15 out of 38 cases) mRNA expression and for alpha-subunit, LH, and FSH release. D2R, sstr3, and sstr2 mRNAs were consistently observed, with the dominant expression of D2R (2.9+/-2.6 copy/copy beta-glucuronidase; mean+/-s.e.m.), when compared with sstr3 and sstr2 (0.6+/-1.0 and 0.3+/-0.6 respectively). BIM-23A760, a molecule with high affinity for D2R and sstr2, significantly inhibited [3H]thymidine incorporation in 23 out of 38 (60%) NFPA cultures (EC50=1.2 pM and Emax=-33.6+/-3.7%). BIM-23A760 effects were similar to those induced by the selective D2R agonist cabergoline that showed a statistically significant inhibition in 18 out of 27 tumors (compared with a significant inhibition obtained in 17 out of 27 tumors using BIM-23A760, in the same subgroup of adenomas analyzed), while octreotide was effective in 13 out of 27 cases. In conclusion, superimposable data generated in four independent laboratories using a standardized protocol demonstrate that, in vitro, chimeric dopamine/sstr agonists are effective in inhibiting cell proliferation in two-thirds of NFPAs.


Cancer Research | 2010

The Somatostatin Analogue Octreotide Confers Sensitivity to Rapamycin Treatment on Pituitary Tumor Cells

Vesna Cerovac; Jose Monteserin-Garcia; Hadara Rubinfeld; Michael Buchfelder; Marco Losa; Tullio Florio; Marcelo Paez-Pereda; Günter K. Stalla; Marily Theodoropoulou

Rapamycin and its analogues have significant antiproliferative action against a variety of tumors. However, sensitivity to rapamycin is reduced by Akt activation that results from the ablative effects of rapamycin on a p70 S6K-induced negative feedback loop that blunts phosphoinositide 3-kinase (PI3K)-mediated support for Akt activity. Thus, sensitivity to rapamycin might be increased by imposing an upstream blockade to the PI3K/Akt pathway. Here, we investigated this model using the somatostatin analogue octreotide as a tool to decrease levels of activated Ser(473)-phosphorylated Akt (pAkt-Ser(473)) in pituitary tumor cells that express somatostatin receptors. Octreotide increased levels of phosphorylated insulin receptor substrate-1 that were suppressed by rapamycin, subsequently decreasing levels of pAkt-Ser(473) through effects on phosphotyrosine phosphatase SHP-1. Octreotide potentiated the antiproliferative effects of rapamycin in immortalized pituitary tumor cells or human nonfunctioning pituitary adenoma cells in primary cell culture, sensitizing tumor cells even to low rapamycin concentrations. Combined treatment of octreotide and rapamycin triggered G(1) cell cycle arrest, decreasing E2F transcriptional activity and cyclin E levels by increasing levels of p27/Kip1. These findings show that adjuvant treatment with a somatostatin analogue can sensitize pituitary tumor cells to the antiproliferative effects of rapamycin.


PLOS ONE | 2009

c-Src Regulates Akt Signaling in Response to Ghrelin via β-Arrestin Signaling-Independent and -Dependent Mechanisms

Maria Lodeiro; Marily Theodoropoulou; María Pardo; Felipe F. Casanueva; Jesús P. Camiña

The aim of the present study was to identify the signaling mechanisms to ghrelin-stimulated activation of the serine/threonine kinase Akt. In human embryonic kidney 293 (HEK293) cells transfected with GHS-R1a, ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early Gi/o protein-dependent pathway and a late pathway mediated by β-arrestins. The starting point is the Gi/o-protein dependent PI3K activation that leads to the membrane recruitment of Akt, which is phosphorylated at Y by c-Src with the subsequent phosphorylation at A-loop (T308) and HM (S473) by PDK1 and mTORC2, respectively. Once the receptor is activated, a second signaling pathway is mediated by β-arrestins 1 and 2, involving the recruitment of at least β-arrestins, c-Src and Akt. This β-arrestin-scaffolded complex leads to full activation of Akt through PDK1 and mTORC2, which are not associated to the complex. In agreement with these results, assays performed in 3T3-L1 preadipocyte cells indicate that β-arrestins and c-Src are implicated in the activation of Akt in response to ghrelin through the GHS-R1a. In summary this work reveals that c-Src is crucially involved in the ghrelin-mediated Akt activation. Furthermore, the results support the view that β-arrestins act as both scaffolding proteins and signal transducers on Akt activation.

Collaboration


Dive into the Marily Theodoropoulou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Arzt

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Buchfelder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge