Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marilyn C. Roberts is active.

Publication


Featured researches published by Marilyn C. Roberts.


Antimicrobial Agents and Chemotherapy | 1999

Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants

Marilyn C. Roberts; Joyce A. Sutcliffe; Patrice Courvalin; Lars Bogø Jensen; Julian I. Rood; Helena Seppälä

Macrolides are composed of 14 (erythromycin and clarithromycin)-, 15 (azithromycin)-, or 16 (josamycin, spiramycin, and tylosin)-membered lactones to which are attached amino and/or neutral sugars via glycosidic bonds. Erythromycin was introduced in 1952 as the first macrolide antibiotic. Unfortunately, within a year, erythromycin-resistant (Emr) staphylococci from the United States, Europe, and Japan were described (101). Erythromycin is produced by Saccharopolyspora erythraea, while the newer macrolides are semisynthetic molecules with substitutions on the lactone. The newer derivatives, such as clarithromycin and azithromycin, have improved intracellular and tissue penetration, are more stable, are better absorbed, have a lower incidence of gastrointestinal side effects, and are less likely to interact with other drugs. They are useable against a wider range of infectious bacteria, such as Legionella, Chlamydia, Haemophilus, and some Mycobacterium species (not M. tuberculosis), and their pharmacokinetics provide for less frequent dosing than erythromycin (21, 47, 96, 97). As a result, the usage of the newer macrolides has increased dramatically over the last few years, which has led to increased exposure of bacterial populations to macrolides (101–103, 107). Macrolides inhibit protein synthesis by stimulating dissociation of the peptidyl-tRNA molecule from the ribosomes during elongation (101, 103). This results in chain termination and a reversible stoppage of protein synthesis. The first mechanism of macrolide resistance described was due to posttranscriptional modification of the 23S rRNA by the adenine-N6 methyltransferase (101–103). These enzymes add one or two methyl groups to a single adenine (A2058 in Escherichia coli) in the 23S rRNA moiety. Over the last 30 years, a number of adenine-N6-methyltransferases from different species, genera, and isolates have been described. In general, genes encoding these methylases have been designated erm (erythromycin ribosome methylation), although there are exceptions, especially in the antibiotic-producing organisms (see Tables ​Tables11 and ​and3)3) (103). As the number of erm genes described has grown, the nomenclature for these genes has varied and has been inconsistent (Table ​(Table1).1). In some cases, unrelated genes have been given the same letter designation, while in other cases, highly related genes (>90% identity) have been given different names. TABLE 1 rRNA methylase genes involved in MLSB resistance TABLE 3 Location of antibiotic resistance genesa The binding site in the 50S ribosomal subunit for erythromycin overlaps the binding site of the newer macrolides, as well as the structurally unrelated lincosamides and streptogramin B antibiotics. The modification by methylase(s) reduces the binding of all three classes of antibiotics, which results in resistance against macrolides, lincosamides, and streptogramin B antibiotics (MLSB). The rRNA methylases are the best studied among macrolide resistance mechanisms (47, 101–103). However, a variety of other mechanisms have been described which also confer resistance (Table ​(Table2).2). Many of these alternative mechanisms of resistance confer resistance to only one or two of the antibiotic classes of the MLSB complex. TABLE 2 Efflux and inactivating genes In this review, we suggest a new nomenclature for naming MLS genes and propose to use the rules developed for identifying and naming new tetracycline resistance genes (51, 52). This system, with a few recent modifications, was originally designed because of the ability of two genes to be distinguished uniquely by DNA-DNA probe methodology (51). It was generally found that two genes with <80% amino acid sequence identity provided enough variability in nucleotide sequence to permit distinct probes to be designed. Although many investigators are likely to sequence new genes, the use of probe technology allows rapid identification of isolates containing potentially new genes, as well as a reliable way to screen populations and determine the frequency of any one resistant determinant. Therefore, we continued this paradigm by assigning two genes of ≥80% amino acid identity to the same class and same letter designation, while two genes that show ≤79% amino acid identity are given a different letter designation. Table ​Table11 shows the results of the classification, with some classes having members with little variability, while others, like classes A and O, show a greater range of homology at both the DNA and amino acid levels. As new gene sequences emerge, ideally they will need to be compared by oligonucleotide probe hybridization and/or sequence analysis against the bank of known genes before a new designation is assigned. If multiple genes are available in any one class, especially when there is a range as in class A, then all representative members of the class should be examined, not just one. To confirm that the proposed name or number for the newly discovered resistance determinant has not been used by another investigator, please contact M. C. Roberts for this information. A similar request has been made for new tet genes (52).


Fems Microbiology Letters | 2008

Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes

Marilyn C. Roberts

This Minireview summarizes the changes in the field of bacterial resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone (MLSKO) antibiotics since the nomenclature review in 1999. A total of 66 genes conferring resistance to this group of antibiotics has now been identified and includes 13 new rRNA methylase genes, four ATP-binding transporter genes coding for efflux proteins, and five new inactivating enzymes. During this same time period, 73 new genera carrying known rRNA methylase genes and 87 new genera carrying known efflux and/or inactivating genes have been recognized. The number of bacteria with mutations in the genes for 23S rRNA, L4 and L22 ribosomal proteins, resulting in reduced susceptibility to some members of the group of MLSKO antibiotics has also increased and now includes nine different Gram-positive and 10 different Gram-negative genera. New conjugative transposons carrying different MLSKO genes along with an increased number of antibiotics and/or heavy metal resistance genes have been identified. These mobile elements may play a role in the continued spread of the MLSKO resistance genes into new species, genera, and ecosystems.


Antimicrobial Agents and Chemotherapy | 2003

Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms.

Claudio D. Miranda; Corinna Kehrenberg; Catherine Ulep; Stefan Schwarz; Marilyn C. Roberts

ABSTRACT Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas. Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas. The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter. One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas. Finally, one isolate carried tet(L), found for the first time in the genus Morganella. By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes.


Antimicrobial Agents and Chemotherapy | 1986

High-level tetracycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant.

Stephen A. Morse; Steven R. Johnson; James W. Biddle; Marilyn C. Roberts

Recently, strains of Neisseria gonorrhoeae have been isolated which are highly resistant to tetracycline (MICs of 16 to 64 micrograms/ml). This resistance was due to the acquisition of the resistance determinant tetM, a transposon-borne determinant initially found in the genus Streptococcus and more recently in Mycoplasma hominis, Ureaplasma urealyticum, and Gardnerella vaginalis. In N. gonorrhoeae, the tetM determinant was located on a 25.2-megadalton plasmid. This plasmid arose from the insertion of tetM into the 24.5-megadalton gonococcal conjugative plasmid. The tetM determinant could be transferred to suitable recipient strains of N. gonorrhoeae by both genetic transformation and conjugation. Images


Antimicrobial Agents and Chemotherapy | 2003

Identifying antimicrobial resistance genes with DNA microarrays

Douglas R. Call; Marlene K. Bakko; Melissa J. Krug; Marilyn C. Roberts

ABSTRACT We developed and tested a glass-based microarray suitable for detecting multiple tetracycline (tet) resistance genes. Microarray probes for 17 tet genes, the β-lactamase blaTEM-1 gene, and a 16S ribosomal DNA gene (Escherichia coli) were generated from known controls by PCR. The resulting products (ca. 550 bp) were applied as spots onto epoxy-silane-derivatized, Teflon-masked slides by using a robotic spotter. DNA was extracted from test strains, biotinylated, hybridized overnight to individual microarrays at 65°C, and detected with Tyramide Signal Amplification, Alexa Fluor 546, and a microarray scanner. Using a detection threshold of 3× the standard deviation, we correctly identified tet genes carried by 39 test strains. Nine additional strains were not known to harbor any genes represented on the microarray, and these strains were negative for all 17 tet probes as expected. We verified that R741a, which was originally thought to carry a novel tet gene, tet(I), actually harbored a tet(G) gene. Microarray technology has the potential for screening a large number of different antibiotic resistance genes by the relatively low-cost methods outlined in this paper.


Clinical Infectious Diseases | 2003

Tetracycline Therapy: Update

George M. Eliopoulos; Marilyn C. Roberts

Tetracyclines have been used for treatment of a wide variety of gram-positive and gram-negative bacterial infections since the 1950s. In addition to being effective against traditional bacteria, tetracyclines have been used to treat infections due to intracellular chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites and a variety of noninfectious conditions. They are important for treatment of and prophylaxis against infections with bacteria that could be used in biological weapons. Bacterial resistance to tetracycline was identified shortly after the introduction of therapy. At present, tetracycline resistance in bacteria can occur by acquisition of >or=1 of the 36 different genes, by mutations to host efflux pumps or in their 16S rRNA sequences, or by alteration in the permeability of the cell. In contrast, tetracycline resistance has not yet been described in protozoa or other eukaryotic organisms.


Journal of Dental Research | 2006

Mutans Streptococci Dose Response to Xylitol Chewing Gum

Peter Milgrom; Kiet A. Ly; Marilyn C. Roberts; Marilynn Rothen; Gregory Mueller; David K. Yamaguchi

Xylitol is promoted in caries-preventive strategies, yet its effective dose range is unclear. This study determined the dose-response of mutans streptococci in plaque and unstimulated saliva to xylitol gum. Participants (n = 132) were randomized: controls (G1) (sorbitol/maltitol), or combinations giving xylitol 3.44 g/day (G2), 6.88 g/day (G3), or 10.32 g/day (G4). Groups chewed 3 pellets/4 times/d. Samples were taken at baseline, 5 wks, and 6 mos, and were cultured on modified Mitis Salivarius agar for mutans streptococci and on blood agar for total culturable flora. At 5 wks, mutans streptococci levels in plaque were 10x lower than baseline in G3 and G4 (P = 0.007/0.003). There were no differences in saliva. At 6 mos, mutans streptococci in plaque for G3 and G4 remained 10x lower than baseline (P = 0.007/0.04). Saliva for G3 and G4 was lower than baseline by 8 to 9x (P = 0.011/0.038). Xylitol at 6.44 g/day and 10.32 g/day reduces mutans streptococci in plaque at 5 wks, and in plaque and unstimulated saliva at 6 mos. A plateau effect is suggested between 6.44 g and 10.32 g xylitol/day.


Antimicrobial Agents and Chemotherapy | 2005

Salivary Antimicrobial Peptide Expression and Dental Caries Experience in Children

Renchuan Tao; Richard J. Jurevic; Kimberly K. Coulton; Marjorie T. Tsutsui; Marilyn C. Roberts; Janet R. Kimball; Norma Wells; Jeffery Berndt; Beverly A. Dale

ABSTRACT Dental caries is a major worldwide oral disease problem in children. Although caries are known to be influenced by dietary factors, the disease results from a bacterial infection; thus, caries susceptibility may be affected by host factors such as salivary antimicrobial peptides. This study aimed to determine a possible correlation between caries prevalence in children and salivary concentrations of the antimicrobial peptides human beta-defensin-3 (hBD-3), the cathelicidin LL37, and the alpha-defensins HNP1-3 (a mixture of HNP1, 2, 3). Oral examinations were performed on 149 middle school children, and unstimulated whole saliva was collected for immunoassays of the three peptides and for assay of caries-causing bacteria in saliva. The median salivary levels of hBD-3, LL37, and HNP1-3 were in the microgram/ml range but were highly variable in the population. While levels of LL37 and hBD-3 did not correlate with caries experience, the median HNP1-3 levels were significantly higher in children with no caries than in children with caries. Children with high caries levels did not have high levels of salivary Streptococcus mutans, and the HNP1-3 level was not correlated with salivary S. mutans. By immunohistochemistry we localized HNP1-3 in submandibular salivary duct cells. HNPs are also released by neutrophils into the gingival crevicular fluid. Both sources may account for their presence in saliva. Low salivary levels of HNP1-3 may represent a biological factor that contributes to caries susceptibility. This observation could lead to new ways to screen for caries susceptibility and to new means of assessing the risk for this common oral problem.


Antimicrobial Agents and Chemotherapy | 2003

Presence of the tet(O) Gene in Erythromycin- and Tetracycline-Resistant Strains of Streptococcus pyogenes and Linkage with either the mef(A) or the erm(A) Gene

Eleonora Giovanetti; Andrea Brenciani; Remo Lupidi; Marilyn C. Roberts; Pietro E. Varaldo

ABSTRACT Sixty-three recent Italian clinical isolates of Streptococcus pyogenes resistant to both erythromycin (MICs ≥ 1 μg/ml) and tetracycline (MICs ≥ 8 μg/ml) were genotyped for macrolide and tetracycline resistance genes. We found 19 isolates carrying the mef(A) and the tet(O) genes; 25 isolates carrying the erm(A) and tet(O) genes; and 2 isolates carrying the erm(A), tet(M), and tet(O) genes. The resistance of all erm(A)-containing isolates was inducible, but the isolates could be divided into two groups on the basis of erythromycin MICs of either >128 or 1 to 4 μg/ml. The remaining 17 isolates included 15 isolates carrying the erm(B) gene and 2 isolates carrying both the erm(B) and the mef(A) genes, with all 17 carrying the tet(M) gene. Of these, 12 carried Tn916-Tn1545-like conjugative transposons. Conjugal transfer experiments demonstrated that the tet(O) gene moved with and without the erm(A) gene and with the mef(A) gene. These studies, together with the results of pulsed-field gel electrophoresis experiments and hybridization assays with DNA probes specific for the tet(O), erm(A), and mef(A) genes, suggested a linkage of tet(O) with either erm(A) or mef(A) in erythromycin- and tetracycline-resistant S. pyogenes isolates. By amplification and sequencing experiments, we detected the tet(O) gene ca. 5.5 kb upstream from the mef(A) gene. This is the first report demonstrating the presence of the tet(O) gene in S. pyogenes and showing that it may be linked with another gene and can be moved by conjugation from one chromosome to another.


Trends in Microbiology | 1994

Epidemiology of tetracycline-resistance determinants

Marilyn C. Roberts

Resistance to tetracycline is generally due either to energy-dependent efflux of tetracycline or to protection of the bacterial ribosomes from the action of tetracycline. The genes that encode this resistance are normally acquired via transferable plasmids and/or transposons. Tet determinants have been found in a wide range of Gram-positive and Gram-negative bacteria and have reduced the effectiveness of therapy with tetracycline.

Collaboration


Dive into the Marilyn C. Roberts's collaboration.

Top Co-Authors

Avatar

David No

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Schwarz

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kayode K. Ojo

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Milgrom

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Vicki A. Luna

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge