Marilyn Fisher
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marilyn Fisher.
Genesis | 2013
Takuya Nakayama; Margaret B. Fish; Marilyn Fisher; Jamina Oomen-Hajagos; Gerald H. Thomsen; Robert M. Grainger
We have assessed the efficacy of the recently developed CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR‐associated) system for genome modification in the amphibian Xenopus tropicalis. As a model experiment, targeted mutations of the tyrosinase gene were verified, showing the expected albinism phenotype in injected embryos. We further tested this technology by interrupting the six3 gene, which is required for proper eye and brain formation. Expected eye and brain phenotypes were observed when inducing mutations in the six3 coding regions, as well as when deleting the gene promoter by dual targeting. We describe here a standardized protocol for genome editing using this system. This simple and fast method to edit the genome provides a powerful new reverse genetics tool for Xenopus researchers. genesis 51:835–843.
Experimental Cell Research | 1979
Marilyn Fisher
Abstract The in vitro spreading behavior of several mesenchymes, including normally migratory and non-migratory types, were compared on a variety of artificial and natural substrata. The spreading behavior of neural crest, somite and limb mesenchyme were compared in Eagles MEM containing 10% fetal bovine serum. All of the mesenchymes behaved similarly on a particular substratum. Mesenchyme spread only slightly on collagen derived from Rana pipiens tadpole tail lamella or rat tail collagen gels. Hyaluronic acid was a poor substratum for attachment, whether in the form of a cross-linked hyaluronate gel or mixed in collagen gels. Tadpole tail basal lamina provided a substratum that promoted extensive spreading of all the mesenchymes tested. Spreading cells acquired a morphology similar to that of migratory cells in vivo, with cells having broad lamellipodia. Similar behavior was observed on NaOH-extracted chick embryo lens capsules, in which largely the collagenous component remains. These results support the notion that mesenchyme behavior is largely determined by the properties of the available substratum.
Developmental Dynamics | 2002
Nicolas Hirsch; Lyle B. Zimmerman; Jessica Gray; Jeiwook Chae; Kristen L. Curran; Marilyn Fisher; Hajime Ogino; Robert M. Grainger
For over a century, amphibian embryos have been a source of significant insight into developmental mechanisms, including fundamental discoveries about the process of induction. The recently developed transgenesis for Xenopus offers new approaches to these poorly understood processes, particularly when undertaken in the quickly maturing species Xenopus tropicalis, which greatly facilitates establishment of permanent transgenic lines. Several X. tropicalis transgenic lines have now been generated, and experiments demonstrating the value of these lines to study induction in embryonic tissue recombinants and explants are presented here. A revised protocol for transgenesis in X. tropicalis resulting in a significant increase in the percentage of transgenic animals that reach adulthood is presented, as well as improvements in tadpole and froglet husbandry, which have facilitated the raising of large numbers of adults. Working transgenic populations have been rapidly expanded, and some transgenes have been bred to homozygosity. Established lines include those bearing the promoter regions of Pax‐6, Otx‐2, Rx, and EF1α coupled to fluorescent reporter genes. Multireporter lines combining, in a single animal, up to three gene promoters coupled to different fluorescent reporters have also been established. The value of X. tropicalis transgenic lines for the study of induction is demonstrated by showing activation of Pax‐6 by noggin treatment of Pax‐6/GFP transgenic animal caps, illustrating how reporter lines allow a rapid, in vivo assay for an inductive response. An experiment showing lens induction in gamma‐crystallin/GFP transgenic lens ectoderm when it is recombined with mouse optic vesicle demonstrates conservation of inducing signals from amphibians and mammals. It also shows how the warmer culture temperatures tolerated by X. tropicalis embryos can be used in assays of factors produced by mammalian cells and tissues. The many applications of transgenic reporter lines and other lines designed to target gene expression in particular tissues promise to bring significant new insights to the classic issues first defined in amphibian systems.
Mechanisms of Development | 2005
Selina Noramly; Lyle B. Zimmerman; Amanda Cox; Renee Aloise; Marilyn Fisher; Robert M. Grainger
In the rapidly developing, diploid amphibian Xenopus tropicalis, genetics can be married to the already powerful tools of the amphibian system to overcome a disability that has hampered Xenopus laevis as a model organism: the difficulties inherent in conducting genetic analyses in a tetraploid organism with a longer generation time. We describe here a gynogenetic screen to uncover naturally occurring recessive mutations in wild X. tropicalis populations, a procedure that is both faster and easier than conventional genetic screens traditionally employed in model organisms to dissect early developmental pathways. During the first round of our screen, gynogenetic diploids from over 160 females comprising four different wild-caught populations were examined. Forty-two potential mutant phenotypes were isolated during this round of gynogenesis. From this group, we describe 10 lines that have genetically heritable recessive mutations. A wide range of developmental defects were obtained in this screen, encompassing effects limited to individual organs as well phenotypes characterized by more global changes in tadpole body morphology. The frequency of recessive mutations detected in our screen appears lower than that seen in other vertebrate genetic screens, but given constraints on the screening procedure used here, is likely to be consistent with rates seen in other animals, and clearly illustrates how wild-caught animals can be a productive source of developmental mutations for experimental study. The development of genetic strategies for the Xenopus system, together with new genomic resources, existing technologies for transgenesis, and other means for manipulating gene expression, as well as the power of performing embryonic manipulations, will provide an impressive set of tools for resolving complex cell and developmental phenomena in the future.
Neuron | 1988
Marilyn Fisher; Richard J. Mullen
Cerebella, variably deficient in Purkinje cells, were obtained from aggregation chimeras of either Lurcher or Purkinje cell degeneration mutants. These cerebella were used to analyze the expression of glycerol-3-phosphate dehydrogenase (GPDH) in Bergmann glia. Immunocytochemistry showed apparently normal GPDH expression only in Bergmann glia in the immediate vicinity of surviving Purkinje cells. The number of GPDH-positive Bergmann glia cells associated with isolated Purkinje cells was close to that expected, based on measurements in Golgi-stained, normal cerebella of the Bergmann glia cells domain. The results support the hypothesis that GPDH expression in Bergmann glia cells depends upon their sustained interaction with Purkinje cells, most likely involving direct cell-cell contact.
Developmental Biology | 2015
Takuya Nakayama; Marilyn Fisher; Keisuke Nakajima; Akinleye O. Odeleye; Keith Zimmerman; Margaret B. Fish; Yoshio Yaoita; Jena L. Chojnowski; James D. Lauderdale; Peter A. Netland; Robert M. Grainger
Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans.
Developmental Brain Research | 1998
Peter C. Brunjes; Marilyn Fisher; Robert M. Grainger
Mice with homozygous mutations of the Pax-6 gene exhibit a constellation of developmental problems including the absence of eyes and nasal cavities and problems in the movement of neuroblasts out of the germinal epithelium. In this paper, we demonstrate further disturbances in neuronal migration. Normally, cells produced along the lateral ventricles move laterally across the pallium, ultimately coming to reside in the lateral neocortex and primary olfactory cortex. In mutant animals, these cells continue to migrate to the pial surface of the brain.
Developmental Biology | 2014
Margaret B. Fish; Takuya Nakayama; Marilyn Fisher; Nicolas Hirsch; Amanda Cox; Rollin Reeder; Samantha Carruthers; Amanda Hall; Derek L. Stemple; Robert M. Grainger
The retinal anterior homeobox (rax) gene encodes a transcription factor necessary for vertebrate eye development. rax transcription is initiated at the end of gastrulation in Xenopus, and is a key part of the regulatory network specifying anterior neural plate and retina. We describe here a Xenopus tropicalis rax mutant, the first mutant analyzed in detail from a reverse genetic screen. As in other vertebrates, this nonsense mutation results in eyeless animals, and is lethal peri-metamorphosis. Tissue normally fated to form retina in these mutants instead forms tissue with characteristics of diencephalon and telencephalon. This implies that a key role of rax, in addition to defining the eye field, is in preventing alternative forebrain identities. Our data highlight that brain and retina regions are not determined by the mid-gastrula stage but are by the neural plate stage. An RNA-Seq analysis and in situ hybridization assays for early gene expression in the mutant revealed that several key eye field transcription factors (e.g. pax6, lhx2 and six6) are not dependent on rax activity through neurulation. However, these analyses identified other genes either up- or down-regulated in mutant presumptive retinal tissue. Two neural patterning genes of particular interest that appear up-regulated in the rax mutant RNA-seq analysis are hesx1 and fezf2. These genes were not previously known to be regulated by rax. The normal function of rax is to partially repress their expression by an indirect mechanism in the presumptive retina region in wildtype embryos, thus accounting for the apparent up-regulation in the rax mutant. Knock-down experiments using antisense morpholino oligonucleotides directed against hesx1 and fezf2 show that failure to repress these two genes contributes to transformation of presumptive retinal tissue into non-retinal forebrain identities in the rax mutant.
Developmental Biology | 2017
Takuya Nakayama; Keisuke Nakajima; Amanda Cox; Marilyn Fisher; Mary Howell; Margaret B. Fish; Yoshio Yaoita; Robert M. Grainger
We describe a novel recessive and nonlethal pigmentation mutant in Xenopus tropicalis. The mutant phenotype can be initially observed in tadpoles after stage 39/40, when mutant embryos display markedly reduced pigmentation in the retina and the trunk. By tadpole stage 50 almost all pigmented melanophores have disappeared. Most interestingly, those embryos fail entirely to make pigmented iridophores. The combined reduction/absence of both pigmented iridophores and melanophores renders these embryos virtually transparent, permitting one to easily observe both the developing internal organs and nervous system; accordingly, we named this mutant no privacy (nop). We identified the causative genetic lesion as occurring in the Xenopus homolog of the human Hermansky-Pudlak Syndrome 6 (HPS6) gene, combining several approaches that utilized conventional gene mapping and classical and modern genetic tools available in Xenopus (gynogenesis, BAC transgenesis and TALEN-mediated mutagenesis). The nop allele contains a 10-base deletion that results in truncation of the Hps6 protein. In humans, HPS6 is one of the genes responsible for the congenital disease HPS, pathological symptoms of which include oculocutaneous albinism caused by defects in lysosome-related organelles required for pigment formation. Markers for melanin-producing neural crest cells show that the cells that would give rise to melanocytes are present in nop, though unpigmented. Abnormalities develop at tadpole stages in the pigmented retina when overall pigmentation becomes reduced and large multi-melanosomes are first formed. Ear development is also affected in nop embryos when both zygotic and maternal hsp6 is mutated: otoliths are often reduced or abnormal in morphology, as seen in some mouse HPS mutations, but to our knowledge not described in the BLOC-2 subset of HPS mutations nor described in non-mammalian systems previously. The transparency of the nop line suggests that these animals will aid studies of early organogenesis during tadpole stages. In addition, because of advantages of the Xenopus system for assessing gene expression, cell biological mechanisms, and the ontogeny of melanosome and otolith formation, this should be a highly useful model for studying the molecular mechanisms underlying the acquisition of the HPS phenotype and the underlying biology of lysosome-related organelle function.
Genesis | 2012
Hong Jin; Marilyn Fisher; Robert M. Grainger
The commitment of regions of the embryo to form particular tissues or organs is a central concept in development, but the mechanisms controlling this process remain elusive. The well‐studied model of lens induction is ideal for dissecting key phases of the commitment process. We find in Xenopus tropicalis, at the time of specification of the lens, i.e., when presumptive lens ectoderm (PLE) can be isolated, cultured, and will differentiate into a lens that the PLE is not yet irreversibly committed, or determined, to form a lens. When transplanted into the posterior of a host embryo lens development is prevented at this stage, while ∼ 3 h later, using the same assay, determination is complete. Interestingly, we find that specified lens ectoderm, when cultured, acquires the ability to become determined without further tissue interactions. Furthermore, we show that specified PLE has a different gene expression pattern than determined PLE, and that determined PLE can maintain expression of essential regulatory genes (e.g., foxe3, mafB) in an ectopic environment, while specified PLE cannot. These observations set the stage for a detailed mechanistic study of the genes and signals controlling tissue commitment. genesis 50:728–740, 2012.