Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marin Manuel is active.

Publication


Featured researches published by Marin Manuel.


The Journal of Physiology | 2014

Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis

Nicolas Delestrée; Marin Manuel; Caroline Iglesias; Sherif M. ElBasiouny; Charles J. Heckman; Daniel Zytnicki

Intrinsic hyperexcitability of spinal motoneurones is thought to contribute to excitotoxicity during amyotrophic lateral sclerosis (ALS), but it has never been demonstrated that adult motoneurones become hyperexcitable before disconnection from their muscle fibres. We found an increased input conductance in motoneurones recorded in a mouse model of ALS. Yet, most cells retained normal excitability as measured by current onset for firing and input–output gain. This indicates successful regulation of excitability, compensating for the increase in conductance. In contrast, some cells became hypoexcitable, losing their ability to fire repetitively to quasi‐stationary inputs before denervation. Hypoexcitability might therefore be an early marker of disease progression. We thereby demonstrate that, if excitotoxicity is indeed a mechanism leading to degeneration in ALS, it is not caused by changes in the intrinsic electrical properties of the motoneurones but most probably by extrinsic factors such as excessive synaptic excitation.


The Journal of Neuroscience | 2009

Fast Kinetics, High-Frequency Oscillations, and Subprimary Firing Range in Adult Mouse Spinal Motoneurons

Marin Manuel; Caroline Iglesias; Maud Donnet; Félix Leroy; C. J. Heckman; Daniel Zytnicki

The fast contraction time of mouse motor units creates a unique situation in which motoneurons have to fire at low frequencies to produce small forces but also at very high frequency (much higher than in cat or rat motoneurons) to reach the fusion frequency of their motor units. To understand how this problem is solved, we performed intracellular recordings of adult mouse spinal motoneurons and investigated systematically their subthreshold properties and their discharge pattern. We show that mouse motoneurons have a much wider range of firing frequencies than cat and rat motoneurons because of three salient features. First, they have a short membrane time constant. This results in a higher cutoff frequency and a higher resonance frequency, which allow mouse motoneurons to integrate inputs at higher frequencies. Second, their afterhyperpolarization (AHP) is faster, allowing the motoneurons to discharge at a higher rate. Third, motoneurons display high-frequency (100–150 Hz) subthreshold oscillations during the interspike intervals. The fast membrane kinetics greatly favors the appearance of these oscillations, creating a “subprimary range” of firing. In this range, which has never been reported in cat and in rat spinal motoneurons, the oscillations follow the AHP and trigger spiking after a variable delay, allowing a discharge at low frequency but at the expense of an irregular rate.


The Journal of Neuroscience | 2007

Resonant or Not, Two Amplification Modes of Proprioceptive Inputs by Persistent Inward Currents in Spinal Motoneurons

Marin Manuel; Claude Meunier; Maud Donnet; Daniel Zytnicki

Why do motoneurons possess two persistent inward currents (PICs), a fast sodium current and a slow calcium current? To answer this question, we replaced the natural PICs with dynamic clamp-imposed artificial PICs at the soma of spinal motoneurons of anesthetized cats. We investigated how PICs with different kinetics (1–100 ms) amplify proprioceptive inputs. We showed that their action depends on the presence or absence of a resonance created by the Ih current. In resonant motoneurons, a fast PIC enhances the resonance and amplifies the dynamic component of Ia inputs elicited by ramp-and-hold muscle stretches. This facilitates the recruitment of these motoneurons, which likely innervate fast contracting motor units developing large forces, e.g., to restore balance or produce ballistic movements. In nonresonant motoneurons, in contrast, a fast PIC easily triggers plateau potentials, which leads to a dramatic amplification of the static component of Ia inputs. This likely facilitates the recruitment of these motoneurons, innervating mostly slowly contracting and fatigue-resistant motor units, during postural activities. Finally, a slow PIC may switch a resonant motoneuron to nonresonant by counterbalancing Ih, thus changing the action of the fast PIC. A modeling study shows that Ih needs to be located on the dendrites to create the resonance, and it predicts that dendritic PICs amplify synaptic input in the same manner as somatic PICs.


The Journal of Neuroscience | 2011

Extra Forces Evoked during Electrical Stimulation of the Muscle or Its Nerve Are Generated and Modulated by a Length-Dependent Intrinsic Property of Muscle in Humans and Cats

Christopher K. Thompson; Michael D. Johnson; Marin Manuel; T. George Hornby; C. J. Heckman

Extra forces or torques are defined as forces or torques that are larger than would be expected from the input or stimuli, which can be mediated by properties intrinsic to motoneurons and/or to the muscle. The purpose of this study was to determine whether extra forces/torques evoked during electrical stimulation of the muscle or its nerve with variable frequency stimulation are modulated by muscle length/joint angle. A secondary aim was to determine whether extra forces/torques are generated by an intrinsic neuronal or muscle property. Experiments were conducted in 14 able-bodied human subjects and in eight adult decerebrate cats. Torque and force were measured in human and cat experiments, respectively. Extra forces/torques were evoked by stimulating muscles with surface electrodes (human experiments) or by stimulating the nerve with cuff electrodes (cat experiments). In humans and cats, extra forces/torques were larger at short muscle lengths, indicating that a similar regulatory mechanism is involved. In decerebrate cats, extra forces and length-dependent modulation were unaffected by intrathecal methoxamine injections, despite evidence of increased spinal excitability, and by transecting the sciatic nerve proximal to the nerve stimulations. Anesthetic nerve block experiments in two human subjects also failed to abolish extra torques and the length-dependent modulation. Therefore, these data indicate that extra forces/torques evoked during electrical stimulation of the muscle or nerve are muscle length-dependent and primarily mediated by an intrinsic muscle property.


The Journal of Neuroscience | 2011

Mixed Mode Oscillations in Mouse Spinal Motoneurons Arise from a Low Excitability State

Caroline Iglesias; Claude Meunier; Marin Manuel; Yulia Timofeeva; Nicolas Delestrée; Daniel Zytnicki

We explain the mechanism that elicits the mixed mode oscillations (MMOs) and the subprimary firing range that we recently discovered in mouse spinal motoneurons. In this firing regime, high-frequency subthreshold oscillations appear a few millivolts below the spike voltage threshold and precede the firing of a full blown spike. By combining intracellular recordings in vivo (including dynamic clamp experiments) in mouse spinal motoneurons and modeling, we show that the subthreshold oscillations are due to the spike currents and that MMOs appear each time the membrane is in a low excitability state. Slow kinetic processes largely contribute to this low excitability. The clockwise hysteresis in the I–F relationship, frequently observed in mouse motoneurons, is mainly due to a substantial slow inactivation of the sodium current. As a consequence, less sodium current is available for spiking. This explains why a large subprimary range with numerous oscillations is present in motoneurons displaying a clockwise hysteresis. In motoneurons whose I–F curve exhibits a counterclockwise hysteresis, it is likely that the slow inactivation operates on a shorter time scale and is substantially reduced by the de-inactivating effect of the afterhyperpolarization (AHP) current, thus resulting in a more excitable state. This accounts for the short subprimary firing range with only a few MMOs seen in these motoneurons. Our study reveals a new role for the AHP current that sets the membrane excitability level by counteracting the slow inactivation of the sodium current and allows or precludes the appearance of MMOs.


The Journal of Physiology | 2006

The afterhyperpolarization conductance exerts the same control over the gain and variability of motoneurone firing in anaesthetized cats

Marin Manuel; C. Meunier; Maud Donnet; Daniel Zytnicki

Does the afterhyperpolarization current control the gain and discharge variability of motoneurones according to the same law? We investigated this issue in lumbar motoneurones of anaesthetized cats. Using dynamic clamp, we measured the conductance, time constant and driving force of the AHP current in a sample of motoneurones and studied how the gain was correlated to these quantities. To study the action of the AHP on the discharge variability and to compare it to its action on the gain, we injected an artificial AHP‐like current in motoneurones. This increased the natural AHP. In three motoneurones, we abolished most of the natural AHP with the calcium chelator BAPTA to investigate the condition where the discharge was essentially controlled by the artificial AHP. Our results demonstrate that both the gain and the coefficient of variation of the firing rate are inversely proportional to the magnitude and to the time constant of the artificial AHP conductance. This indicates that the AHP exerts the same control over the gain and the variability. This mechanism ensures that the variability of the discharge is modulated with the gain. This guarantees a great regularity of the discharge when the motoneurone is in a low excitability state and hence good control of the force produced.


Journal of Integrative Neuroscience | 2011

ALPHA, BETA AND GAMMA MOTONEURONS: FUNCTIONAL DIVERSITY IN THE MOTOR SYSTEM'S FINAL PATHWAY

Marin Manuel; Daniel Zytnicki

Since their discovery in the late 19th century our conception of motoneurons has steadily evolved. Motoneurons share the same general function: they drive the contraction of muscle fibers and are the final common pathway, i.e., the seat of convergence of all the central and peripheral pathways involved in motricity. However, motoneurons innervate different types of muscular targets. Ordinary muscle fibers are subdivided into three main subtypes according to their structural and mechanical properties. Intrafusal muscle fibers located within spindles can elicit either a dynamic, or a static, action on the spindle sensory endings. No less than seven categories of motoneurons have thereby been identified on the basis of their innervation pattern. This functional diversity has hinted at a similar diversity in the inputs each motoneuron receives, as well as in the electrical, or cellular, properties of the motoneurons that match the properties of their muscle targets. The notion of the diverse properties of motoneurons has been well established by the work of many prominent neuroscientists. But in todays scientific literature, it tends to fade and motoneurons are often thought of as a homogenous group, which develop from a given population of precursor cells, and which express a common set of molecules. We first present here the historical milestones that led to the recognition of the functional diversity of motoneurons. We then review how the intrinsic electrical properties of motoneurons are precisely tuned in each category of motoneurons in order to produce an output that is adapted to the contractile properties of their specific targets.


The Journal of Neuroscience | 2012

Push-Pull Control of Motor Output

Michael D. Johnson; Allison Hyngstrom; Marin Manuel; C. J. Heckman

Inhibition usually decreases input–output excitability of neurons. If, however, inhibition is coupled to excitation in a push–pull fashion, where inhibition decreases as excitation increases, neuron excitability can be increased. Although the presence of push–pull organization has been demonstrated in single cells, its functional impact on neural processing depends on its effect on the system level. We studied push–pull in the motor output stage of the feline spinal cord, a system that allows independent control of inhibitory and excitatory components. Push–pull organization was clearly present in ankle extensor motoneurons, producing increased peak-to-peak modulation of synaptic currents. The effect at the system level was equally strong. Independent control of the inhibitory component showed that the stronger the background of inhibition, the greater the peak force production. This illustrates the paradox at the heart of push–pull organization: increased force output can be achieved by increasing background inhibition to provide greater disinhibition.


The Journal of Neuroscience | 2011

Adult Mouse Motor Units Develop Almost All of Their Force in the Subprimary Range: A New All-or-None Strategy for Force Recruitment?

Marin Manuel; C. J. Heckman

Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation (“primary range”) up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing (“subprimary range”) that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.


The Journal of Neuroscience | 2005

How Much Afterhyperpolarization Conductance Is Recruited by an Action Potential? A Dynamic-Clamp Study in Cat Lumbar Motoneurons

Marin Manuel; Claude Meunier; Maud Donnet; Daniel Zytnicki

We accurately measured the conductance responsible for the afterhyperpolarization (medium AHP) that follows a single spike in spinal motoneurons of anesthetized cats. This was done by using the dynamic-clamp method. We injected an artificial current in the neurons that increased the AHP amplitude, and we made use of the fact that the intensity of the natural AHP current at the trough of the voltage trajectory was related linearly to the AHP amplitude. We determined at the same time the conductance and the reversal potential of the AHP current. This new method was validated by a simple theoretical model incorporating AHP and hyperpolarization-activated (Ih) currents and could be applied when the decay time constant of the AHP conductance was at least five times shorter than the estimated Ih activation time. This condition was fulfilled in 33 of 44 motoneurons. The AHP conductance varied from 0.3 to 1.4 μS in both slow- and fast-type motoneurons, which was approximately the same range as the input conductance of the entire population. However, AHP and input conductances were not correlated. The larger AHP in slow-type motoneurons was mainly attributable to their smaller input conductance compared with fast motoneurons. The likeness of the AHP conductance in both types of motoneurons is in sharp contrast to differences in AHP decay time and explains why slow- and fast-type motoneurons have similar gain.

Collaboration


Dive into the Marin Manuel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaqing Li

University of Alberta

View shared research outputs
Researchain Logo
Decentralizing Knowledge