Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina A. Kasimova is active.

Publication


Featured researches published by Marina A. Kasimova.


Journal of Biological Chemistry | 2012

Dual Effect of Phosphatidyl (4,5)-Bisphosphate PIP2 on Shaker K+ Channels

Fayal Abderemane-Ali; Zeineb Es-Salah-Lamoureux; Lucie Delemotte; Marina A. Kasimova; Alain J. Labro; Dirk J. Snyders; David Fedida; Mounir Tarek; Isabelle Baró; Gildas Loussouarn

Background: Phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates several voltage-gated K+ channels, but the molecular mechanism remains elusive. Results: PIP2 exerts on Shaker opposite effects on maximal current amplitude and activation voltage dependence. Conclusion: PIP2 stabilizes the gate in the open state and the voltage sensor in the resting state. Significance: This is the first description of an effect of PIP2 on voltage sensor movement. Phosphatidylinositol (4,5)-bisphosphate (PIP2) is a phospholipid of the plasma membrane that has been shown to be a key regulator of several ion channels. Functional studies and more recently structural studies of Kir channels have revealed the major impact of PIP2 on the open state stabilization. A similar effect of PIP2 on the delayed rectifiers Kv7.1 and Kv11.1, two voltage-gated K+ channels, has been suggested, but the molecular mechanism remains elusive and nothing is known on PIP2 effect on other Kv such as those of the Shaker family. By combining giant-patch ionic and gating current recordings in COS-7 cells, and voltage-clamp fluorimetry in Xenopus oocytes, both heterologously expressing the voltage-dependent Shaker channel, we show that PIP2 exerts 1) a gain-of-function effect on the maximal current amplitude, consistent with a stabilization of the open state and 2) a loss-of-function effect by positive-shifting the activation voltage dependence, most likely through a direct effect on the voltage sensor movement, as illustrated by molecular dynamics simulations.


The Journal of Membrane Biology | 2015

Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory

Zoe Cournia; Toby W. Allen; Ioan Andricioaei; Bruno Antonny; Daniel Baum; Grace Brannigan; Nicolae-Viorel Buchete; Jason T. Deckman; Lucie Delemotte; Coral del Val; Ran Friedman; Paraskevi Gkeka; Hans Christian Hege; Jérôme Hénin; Marina A. Kasimova; Antonios Kolocouris; Michael L. Klein; Syma Khalid; M. Joanne Lemieux; Norbert Lindow; Mahua Roy; Jana Selent; Mounir Tarek; Florentina Tofoleanu; Stefano Vanni; Sinisa Urban; David J. Wales; Jeremy C. Smith; Ana-Nicoleta Bondar

Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.


eLife | 2014

Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel

Mark A. Zaydman; Marina A. Kasimova; Kelli McFarland; Zachary Beller; Panpan Hou; Holly E Kinser; Hongwu Liang; Guohui Zhang; Jingyi Shi; Mounir Tarek; Jianmin Cui

Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the IKs current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore. DOI: http://dx.doi.org/10.7554/eLife.03606.001


Proceedings of the National Academy of Sciences of the United States of America | 2015

Free-energy landscape of ion-channel voltage-sensor–domain activation

Lucie Delemotte; Marina A. Kasimova; Michael L. Klein; Mounir Tarek; Vincenzo Carnevale

Significance Voltage-gated cation channels (VGCCs) shape cellular excitability. Their working cycle involves the complex conformational change of modular protein units called voltage sensor domains (VSDs). For over 40 y, these rearrangements have been recorded as “gating” currents, the intensities and kinetics of which are unique signatures of VGCC function. We show that the atomistic description of VSD activation obtained by molecular dynamics simulations and free-energy calculations is consistent with the phenomenological models adopted to account for the macroscopic observables measured by electrophysiology. Our findings pave the way for in silico studies of the VGCC electrophysiological response and hold promise to uncover the molecular underpinnings of inherited channelopathies and modulation of VGCCs by drugs and toxins. Voltage sensor domains (VSDs) are membrane-bound protein modules that confer voltage sensitivity to membrane proteins. VSDs sense changes in the transmembrane voltage and convert the electrical signal into a conformational change called activation. Activation involves a reorganization of the membrane protein charges that is detected experimentally as transient currents. These so-called gating currents have been investigated extensively within the theoretical framework of so-called discrete-state Markov models (DMMs), whereby activation is conceptualized as a series of transitions across a discrete set of states. Historically, the interpretation of DMM transition rates in terms of transition state theory has been instrumental in shaping our view of the activation process, whose free-energy profile is currently envisioned as composed of a few local minima separated by steep barriers. Here we use atomistic level modeling and well-tempered metadynamics to calculate the configurational free energy along a single transition from first principles. We show that this transition is intrinsically multidimensional and described by a rough free-energy landscape. Remarkably, a coarse-grained description of the system, based on the use of the gating charge as reaction coordinate, reveals a smooth profile with a single barrier, consistent with phenomenological models. Our results bridge the gap between microscopic and macroscopic descriptions of activation dynamics and show that choosing the gating charge as reaction coordinate masks the topological complexity of the network of microstates participating in the transition. Importantly, full characterization of the latter is a prerequisite to rationalize modulation of this process by lipids, toxins, drugs, and genetic mutations.


Biochimica et Biophysica Acta | 2014

Voltage-gated ion channel modulation by lipids: Insights from molecular dynamics simulations

Marina A. Kasimova; Mounir Tarek; Alexey K. Shaytan; K. V. Shaitan; Lucie Delemotte

Cells commonly use lipids to modulate the function of ion channels. The lipid content influences the amplitude of the ionic current and changes the probability of voltage-gated ion channels being in the active or in the resting states. Experimental findings inferred from a variety of techniques and molecular dynamics studies have revealed a direct interaction between the lipid headgroups and the ion channel residues, suggesting an influence on the ion channel function. On the other hand the alteration of the lipids may in principle modify the overall electrostatic environment of the channel, and hence the transmembrane potential, leading to an indirect modulation, i.e. a global effect. Here we have investigated the structural and dynamical properties of the voltage-gated potassium channel Kv1.2 embedded in bilayers with modified upper or lower leaflet compositions corresponding to realistic biological scenarios: the first relates to the effects of sphingomyelinase, an enzyme that modifies the composition of lipids of the outer membrane leaflets, and the second to the effect of the presence of a small fraction of PIP2, a highly negatively charged lipid known to modulate voltage-gated channel function. Our molecular dynamics simulations do not enable to exclude the global effect mechanism in the former case. For the latter, however, it is shown that local interactions between the ion channel and the lipid headgroups are key-elements of the modulation.


Bioelectrochemistry | 2016

Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance

Maura Casciola; Marina A. Kasimova; Lea Rems; Sara Zullino; Francesca Apollonio; Mounir Tarek

Molecular dynamics (MD) simulations have become a powerful tool to study electroporation (EP) in atomic detail. In the last decade, numerous MD studies have been conducted to model the effect of pulsed electric fields on membranes, providing molecular models of the EP process of lipid bilayers. Here we extend these investigations by modeling for the first time conditions comparable to experiments using long (μs-ms) low intensity (~kV/cm) pulses, by studying the characteristics of pores formed in lipid bilayers maintained at a constant surface tension and subject to constant charge imbalance. This enables the evaluation of structural (size) and electrical (conductance) properties of the pores formed, providing information hardly accessible directly by experiments. Extensive simulations of EP of simple phosphatidylcholine bilayers in 1M NaCl show that hydrophilic pores with stable radii (1-2.5 nm) form under transmembrane voltages between 420 and 630 mV, allowing for ionic conductance in the range of 6.4-29.5 nS. We discuss in particular these findings and characterize both convergence and size effects in the MD simulations. We further extend these studies in a follow-up paper (Rems et al., Bioelectrochemistry, Submitted), by proposing an improved continuum model of pore conductance consistent with the results from the MD simulations.


Scientific Reports | 2016

A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

Phanindra Velisetty; Istvan Borbiro; Marina A. Kasimova; Luyu Liu; Doreen Badheka; Vincenzo Carnevale; Tibor Rohacs

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6.


Current Topics in Membranes | 2016

Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

Marina A. Kasimova; Daniele Granata; Vincenzo Carnevale

Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels.


Archive | 2016

Voltage-Gated Sodium Channels

Marina A. Kasimova; Daniele Granata; Vincenzo Carnevale

Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels.


Channels | 2014

Functional interaction between S1 and S4 segments in voltage-gated sodium channels revealed by human channelopathies

Mohamed-Yassine Amarouch; Marina A. Kasimova; Mounir Tarek; Hugues Abriel

The p.I141V mutation of the voltage-gated sodium channel is associated with several clinical hyper-excitability phenotypes. To understand the structural bases of the p.I141V biophysical alterations, molecular dynamics simulations were performed. These simulations predicted that the p.I141V substitution induces the formation of a hydrogen bond between the Y168 residue of the S2 segment and the R225 residue of the S4 segment. We generated a p.I141V-Y168F double mutant for both the Nav1.4 and Nav1.5 channels. The double mutants demonstrated the abolition of the functional effects of the p.I141V mutation, consistent with the formation of a specific interaction between Y168-S2 and R225-S4. The single p.Y168F mutation, however, positively shifted the activation curve, suggesting a compensatory role of these residues on the stability of the voltage-sensing domain.

Collaboration


Dive into the Marina A. Kasimova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianmin Cui

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mark A. Zaydman

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge