Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Arcagni is active.

Publication


Featured researches published by Marina Arcagni.


Chemosphere | 2011

Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina.

Andrea Rizzo; Marina Arcagni; María Arribére; Débora Bubach; S. Ribeiro Guevara

We report on total mercury (THg) concentrations in the principal components of food webs of selected Northern Patagonia Andean Range ultraoligotrophic lakes, Argentina. The THg contents were determined using Instrumental Neutron Activation Analysis in muscle and liver of four fish species occupying the higher trophic positions (the introduced Salmo trutta, Oncorhynchus mykiss and Salvelinus fontinalis, and the native Percichthys trucha) accounted for eight lakes belonging to Nahuel Huapi and Los Alerces National Parks. We studied the food web components of both the West and East branches of Lake Moreno, including benthic primary producers such as biofilm, mosses, and macrophytes, three plankton fractions, fish, riparian tree leaves, and benthic invertebrates, namely decapods, molluscs, insect larvae, leeches, oligochaetes, and amphipods. Mercury concentrations in fish muscle varied in a wide range, from less than 0.05 to 4 μg g(-1) dry weight (DW), without a distribution pattern among species but showing higher values for P. trucha and S. fontinalis, particularly in Lake Moreno. The THg contents of the food web components of Lake Moreno varied within 4 orders of magnitude, with the lower values ranging from 0.01 to 0.5 μg g(-1) DW in tree leaves, some macrophytes, juvenile salmonids or benthic macroinvertebrates, and reaching concentrations over 200 μg g(-1) DW in the plankton. Juvenile Galaxias maculatus caught in the pelagic area presented the highest THg contents of all fish sampled, reaching 10 μg g(-1) DW, contents that could be associated with the high THg concentrations in plankton since it is their main food source. Although Lake Moreno is a system without local point sources of contamination, situated in a protected area, some benthic organisms presented high THg contents when compared with those from polluted ecosystems.


Science of The Total Environment | 2013

Differential mercury transfer in the aquatic food web of a double basined lake associated with selenium and habitat.

Marina Arcagni; Linda M. Campbell; María Arribére; Mark Marvin-DiPasquale; Andrea Rizzo; Sergio Ribeiro Guevara

Food web trophodynamics of total mercury (THg) and selenium (Se) were assessed for the double-basined ultraoligotrophic system of Lake Moreno, Patagonia. Each basin has differing proportions of littoral and pelagic habitats, thereby providing an opportunity to assess the importance of habitat (e.g. food web structure or benthic MeHg production) in the transfer of Hg and Se to top trophic fish species. Pelagic plankton, analyzed in three size classes (10-53, 53-200, and >200 μm), had very high [THg], exceeding 200 μg g(-1) dry weight (DW) in the smallest, and a low ratio of MeHg to THg (0.1 to 3%). In contrast, [THg] in littoral macroinvertebrates showed lower values (0.3 to 1.8 μg g(-1) DW). Juvenile and small fish species feeding upon plankton had higher [THg] (0.2 to 8 μg g(-1) muscle DW) compared to large piscivore fish species (0.1 to 1.6 μg g(-1) muscle DW). Selenium concentrations exhibited a much narrower variation range than THg in the food web, varying from 0.5 to 2.7 μg g(-1) DW. Molar Se:Hg ratios exceeded 1 for the majority of organisms in both basins, with most ratios exceeding 10. Using stable nitrogen isotopes as indicator of trophic level, no significant correlations were found with [THg], [Se] or Se:Hg. The apparent lack of biomagnification trends was attributed to elevated [THg] in plankton in the inorganic form mostly, as well as the possibility of consistent Se supply reducing the biomagnification in the food web of the organic portion of THg.


Science of The Total Environment | 2012

Influence of precipitation, landscape and hydrogeomorphic lake features on pelagic allochthonous indicators in two connected ultraoligotrophic lakes of North Patagonia

Claudia Queimaliños; Mariana Reissig; María del Carmen Diéguez; Marina Arcagni; Sergio Ribeiro Guevara; Linda M. Campbell; Carolina Soto Cárdenas; Raúl Rapacioli; María Arribére

We investigated the terrestrial influence on two chained deep ultraoligotrophic lakes of North Patagonia (Argentina) through the seasonal analysis of two pelagic allochthonous indicators: i) water color, as a proxy of allochthonous dissolved organic matter in lakes; and ii) the color to chlorophyll a ratio (Color:Chla), as an indicator of the relationship between allochthonous and autochthonous carbon pools. We also evaluated the potential transfer pathways of the allochthonous dissolved organic matter into the pelagic food webs of these deep lakes, including the natural zooplankton δ(13)C in the analysis. The dynamics of the allochthonous indicators were related to the precipitation regime, water level fluctuations, and hydrogeomorphic and catchment features of lakes Moreno East and Moreno West. The water color (absorbance at 440 nm) was extremely low (<0.28 m(-1)) in both lakes regardless of the season. However, precipitation and snowmelt regimes drove the increase and decrease of water color, respectively. A significant positive relationship between the zooplankton bulk δ(13)C with the water color would suggest an input of allochthonous organic carbon into the pelagic consumers. The incorporation of the dissolved allochthonous material into higher trophic levels is likely favored by the bacterivorous behavior of planktonic organisms, mixotrophic flagellates and ciliates, which dominate the pelagic food webs of these Patagonian lakes. Morphometric aspects, mainly the higher water residence time, led to lower values of allochthony in Moreno East compared to Moreno West, probably accentuated by its upper position in the lake chain. Overall, our results suggest that these allochthonous signals can bring insight into the magnitude of the interaction between terrestrial environments and lake ecosystems, even in extremely clear and ultraoligotrophic systems, such as the Andean Patagonian lakes.


Chemosphere | 2017

Mercury and selenium in the food web of Lake Nahuel Huapi, Patagonia, Argentina

Marina Arcagni; Andrea Rizzo; Romina Juncos; Majda Pavlin; Linda M. Campbell; María Arribére; Milena Horvat; Sergio Ribeiro Guevara

Despite located far from point sources of Hg pollution, high concentrations were recorded in plankton from the deep oligotrophic Lake Nahuel Huapi, located in North Patagonia. Native and introduced top predator fish with differing feeding habits are a valuable economic resource to the region. Hence, Hg and Se trophic interactions and pathways to these fish were assessed in the food web of this lake at three sites, using stable nitrogen and carbon isotopes. As expected based on the high THg in plankton, mercury did not biomagnify in the food web of Lake Nahuel Huapi, as most of the THg in plankton is in the inorganic form. As was observed in other aquatic systems, Se did not biomagnify either. When trophic pathways to top predator fish were analyzed, they showed that THg biomagnified in the food chains of native fish but biodiluted in the food chains of introduced salmonids. A more benthic diet, typical of native fish, resulted in higher [THg] bioaccumulation than a more pelagic or mixed diet, as in the case of introduced fish. Se:THg molar ratios were higher than 1 in all the fish species, indicating that Se might be offering a natural protection against Hg toxicity.


Chemosphere | 2016

Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions.

Romina Juncos; Marina Arcagni; Andrea Rizzo; Linda M. Campbell; María Arribére; Sergio Ribeiro Guevara

Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes.


Environmental Science and Pollution Research | 2016

Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range

Andrea Juárez; María Arribére; Marina Arcagni; Natalia Williams; Andrea Rizzo; Sergio Ribeiro Guevara

Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.


Science of The Total Environment | 2018

Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake

Marina Arcagni; Romina Juncos; Andrea Rizzo; Majda Pavlin; Vesna Fajon; María Arribére; Milena Horvat; Sergio Ribeiro Guevara

Niche segregation between introduced and native fish in Lake Nahuel Huapi, a deep oligotrophic lake in Northwest Patagonia (Argentina), occurs through the consumption of different prey. Therefore, in this work we analyzed total mercury [THg] and methylmercury [MeHg] concentrations in top predator fish and in their main prey to test whether their feeding habits influence [Hg]. Results indicate that [THg] and [MeHg] varied by foraging habitat and they increased with greater percentage of benthic diet and decreased with pelagic diet in Lake Nahuel Huapi. This is consistent with the fact that the native creole perch, a mostly benthivorous feeder, which shares the highest trophic level of the food web with introduced salmonids, had higher [THg] and [MeHg] than the more pelagic feeder rainbow trout and bentho-pelagic feeder brown trout. This differential THg and MeHg bioaccumulation observed in native and introduced fish provides evidence to the hypothesis that there are two main Hg transfer pathways from the base of the food web to top predators: a pelagic pathway where Hg is transferred from water, through plankton (with Hg in inorganic species mostly), forage fish to salmonids, and a benthic pathway, as Hg is transferred from the sediments (where Hg methylation occurs mostly), through crayfish (with higher [MeHg] than plankton), to native fish, leading to one fold higher [Hg].


Biological Trace Element Research | 2008

Selenium and Mercury in Native and Introduced Fish Species of Patagonian Lakes, Argentina

María Arribére; S. Ribeiro Guevara; Débora Bubach; Marina Arcagni; Pablo H. Vigliano


Water Air and Soil Pollution | 2010

Trace Elements in Plankton, Benthic Organisms, and Forage Fish of Lake Moreno, Northern Patagonia, Argentina

María Arribére; Linda M. Campbell; Andrea Rizzo; Marina Arcagni; Jorge Revenga; Sergio Ribeiro Guevara


Ecotoxicology | 2014

Source and trophic transfer of mercury in plankton from an ultraoligotrophic lacustrine system (Lake Nahuel Huapi, North Patagonia)

Andrea Rizzo; Marina Arcagni; Linda M. Campbell; Neža Koron; Majda Pavlin; María Arribére; Milena Horvat; Sergio Ribeiro Guevara

Collaboration


Dive into the Marina Arcagni's collaboration.

Top Co-Authors

Avatar

María Arribére

National University of Cuyo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Rizzo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romina Juncos

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Milena Horvat

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Mariana Reissig

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Soto Cárdenas

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Claudia Queimaliños

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge