Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Belenky is active.

Publication


Featured researches published by Marina Belenky.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR

Vikram S. Bajaj; Melody L. Mak-Jurkauskas; Marina Belenky; Judith Herzfeld; Robert G. Griffin

Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of ≈90. Multidimensional spectroscopy of U-13C,15N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of Ls showed that 3 of these substates revert to bR568 and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR

Melody L. Mak-Jurkauskas; Vikram S. Bajaj; Melissa K. Hornstein; Marina Belenky; Robert G. Griffin; Judith Herzfeld

By exploiting dynamic nuclear polarization (DNP) at 90 K, we observe the first NMR spectrum of the K intermediate in the ion-motive photocycle of bacteriorhodopsin. The intermediate is identified by its reversion to the resting state of the protein in red light and by its thermal decay to the L intermediate. The 15N chemical shift of the Schiff base in K indicates that contact has been lost with its counterion. Under these circumstances, the visible absorption of K is expected to be more red-shifted than is observed and this suggests torsion around single bonds of the retinylidene chromophore. This is in contrast to the development of a strong counterion interaction and double bond torsion in L. Thus, photon energy is stored in electrostatic modes in K and is transferred to torsional modes in L. This transfer is facilitated by the reduction in bond alternation that occurs with the initial loss of the counterion interaction, and is driven by the attraction of the Schiff base to a new counterion. Nevertheless, the process appears to be difficult, as judged by the multiple L substates, with weaker counterion interactions, that are trapped at lower temperatures. The double-bond torsion ultimately developed in the first half of the photocycle is probably responsible for enforcing vectoriality in the pump by causing a decisive switch in the connectivity of the active site once the Schiff base and its counterion are neutralized by proton transfer.


Physical Chemistry Chemical Physics | 2010

Resolution and Polarization Distribution in Cryogenic DNP/MAS Experiments

Alexander B. Barnes; Björn Corzilius; Melody L. Mak-Jurkauskas; Loren B. Andreas; Vikram S. Bajaj; Yoh Matsuki; Marina Belenky; Johan Lugtenburg; Jagadishwar R. Sirigiri; Richard J. Temkin; Judith Herzfeld; Robert G. Griffin

This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz (1)H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between (1)H-(1)H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.


Journal of Magnetic Resonance | 2003

Backbone and side chain assignment strategies for multiply labeled membrane peptides and proteins in the solid state.

Aneta T. Petkova; Marc Baldus; Marina Belenky; Mei Hong; Robert G. Griffin; Judith Herzfeld

We demonstrate that the SPECIFIC CP technique can be used to obtain heteronuclear correlation (HETCOR) spectra of peptide backbones with greater efficiency than conventional HETCOR methods. We show that similar design principles can be employed to achieve selective homonuclear polarization transfer mediated through dipolar or scalar couplings. Both approaches are demonstrated in a tripeptide with uniform 15N and 13C labeling, and with uniform 15N labeling and natural abundance 13C. In other applications, the high efficiency of the heteronuclear SPECIFIC CP transfer allows discrimination of single amide signals in the 248-residue membrane protein bacteriorhodopsin (bR). In particular, variations are detected in the ordering of the Ala81-Arg82 peptide bond among the photocycle intermediates of bR and SPECIFIC CP is used to correlate 15N and 13C signals from the three Val-Pro peptide bonds.


Journal of Magnetic Resonance | 2010

DNP Enhanced Frequency-Selective TEDOR Experiments in Bacteriorhodopsin

Vikram S. Bajaj; Melody L. Mak-Jurkauskas; Marina Belenky; Judith Herzfeld; Robert G. Griffin

We describe a new approach to multiple (13)C-(15)N distance measurements in uniformly labeled solids, frequency-selective (FS) TEDOR. The method shares features with FS-REDOR and ZF- and BASE-TEDOR, which also provide quantitative (15)N-(13)C spectral assignments and distance measurements in U-[(13)C,(15)N] samples. To demonstrate the validity of the FS-TEDOR sequence, we measured distances in [U-(13)C,(15)N]-asparagine which are in good agreement with other methods. In addition, we integrate high frequency dynamic nuclear polarization (DNP) into the experimental protocol and use FS-TEDOR to record a resolved correlation spectrum of the Arg-(13)C(gamma)-(15)N(epsilon) region in [U-(13)C,(15)N]-bacteriorhodopsin. We resolve six of the seven cross-peaks expected based on the primary sequence of this membrane protein.


Biophysical Journal | 2010

Solid-state NMR characterization of gas vesicle structure.

Astrid C. Sivertsen; Marvin J. Bayro; Marina Belenky; Robert G. Griffin; Judith Herzfeld

Gas vesicles are gas-filled buoyancy organelles with walls that consist almost exclusively of gas vesicle protein A (GvpA). Intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae were studied by solid-state NMR spectroscopy, and most of the GvpA sequence was assigned. Chemical shift analysis indicates a coil-α-β-β-α-coil peptide backbone, consistent with secondary-structure-prediction algorithms, and complementary information about mobility and solvent exposure yields a picture of the overall topology of the vesicle subunit that is consistent with its role in stabilizing an air-water interface.


Journal of Molecular Biology | 2009

Solid-State NMR Evidence for Inequivalent GvpA Subunits in Gas Vesicles

Astrid C. Sivertsen; Marvin J. Bayro; Marina Belenky; Robert G. Griffin; Judith Herzfeld

Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue gas vesicle protein A, arranged in an ordered array. Solid-state NMR spectra of intact collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain gas vesicle protein A resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary, and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the beta-sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle.


Biophysical Journal | 2004

Subunit Structure of Gas Vesicles: A MALDI-TOF Mass Spectrometry Study

Marina Belenky; Rebecca Meyers; Judith Herzfeld

Many aquatic microorganisms use gas vesicles to regulate their depth in the water column. The molecular basis for the novel physical properties of these floatation organelles remains mysterious due to the inapplicability of either solution or single crystal structural methods. In the present study, some folding constraints for the approximately 7-kDa GvpA building blocks of the vesicles are established via matrix-assisted laser desorption ionization time-of-flight mass spectrometry studies of intact and proteolyzed vesicles from the cyanobacterium Anabaena flos-aquae and the archaea Halobacterium salinarum. The spectra of undigested vesicles show no evidence of posttranslational modification of the GvpA. The extent of carboxypeptidase digestion shows that the alanine rich C-terminal pentapeptide of GvpA is exposed to the surface in both organisms. The bonds that are cleaved by Trypsin and GluC are exclusively in the extended N-terminus of the Anabaena flos-aquae protein and in the extended C-terminus of the Halobacterium salinarum protein. All the potentially cleavable peptide bonds in the central, highly conserved portion of the protein appear to be shielded from protease attack in spite of the fact that some of the corresponding side chains are almost certainly exposed to the aqueous medium.


Journal of Biological Chemistry | 2012

An Amyloid Organelle, Solid-state NMR Evidence for Cross-β Assembly of Gas Vesicles

Marvin J. Bayro; Eugenio Daviso; Marina Belenky; Robert G. Griffin; Judith Herzfeld

Background: The gas vesicles of aquatic microorganisms are hollow proteinaceous shells with remarkable physical properties that enable them to function as floatation organelles. Results: The gas vesicle subunits associate in a cross-β arrangement. Conclusion: The gas vesicle wall constitutes a functional amyloid. Significance: This new category of functional amyloid broadens our understanding of the diverse roles of the amyloid fold. Functional amyloids have been identified in a wide range of organisms, taking on a variety of biological roles and being controlled by remarkable mechanisms of directed assembly. Here, we report that amyloid fibrils constitute the ribs of the buoyancy organelles of Anabaena flos-aquae. The walls of these gas-filled vesicles are known to comprise a single protein, GvpA, arranged in a low pitch helix. However, the tertiary and quaternary structures have been elusive. Using solid-state NMR correlation spectroscopy we find detailed evidence for an extended cross-β structure. This amyloid assembly helps to account for the strength and amphiphilic properties of the vesicle wall. Buoyancy organelles thus dramatically extend the scope of known functional amyloids.


Journal of the American Chemical Society | 2018

Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR

Qing Zhe Ni; Thach V. Can; Eugenio Daviso; Marina Belenky; Robert G. Griffin; Judith Herzfeld

Despite much attention, the path of the highly consequential primary proton transfer in the light-driven ion pump bacteriorhodopsin (bR) remains mysterious. Here we use DNP-enhanced magic angle spinning (MAS) NMR to study critical elements of the active site just before the Schiff base (SB) deprotonates (in the L intermediate), immediately after the SB has deprotonated and Asp85 has become protonated (in the Mo intermediate), and just after the SB has reprotonated and Asp96 has deprotonated (in the N intermediate). An essential feature that made these experiments possible is the 75-fold signal enhancement through DNP. 15N(SB)-1H correlations reveal that the newly deprotonated SB is accepting a hydrogen bond from an alcohol and 13C-13C correlations show that Asp85 draws close to Thr89 before the primary proton transfer. Concurrently, 15N-13C correlations between the SB and Asp85 show that helices C and G draw closer together just prior to the proton transfer and relax thereafter. Together, these results indicate that Thr89 serves to relay the SB proton to Asp85 and that creating this pathway involves rapprochement between the C and G helices as well as chromophore torsion.

Collaboration


Dive into the Marina Belenky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Griffin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Marvin J. Bayro

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melody L. Mak-Jurkauskas

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Kandori

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge