Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Bellani is active.

Publication


Featured researches published by Marina Bellani.


Journal of Cell Science | 2005

SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm-/- spermatocytes.

Marina Bellani; Peter J. Romanienko; Damian A. Cairatti; R. Daniel Camerini-Otero

SPO11 introduces double-strand breaks (DSBs) that trigger the phosphorylation of H2AX during meiotic prophase. In mice, SPO11 is strictly required for initiation of meiotic recombination and synapsis, yet SPO11 is still considered to be dispensable for sex-body formation in mouse spermatocytes. We provide conclusive evidence showing that functional SPO11, and consequently recombination and synapsis, are required for phosphorylation of H2AX in the X-Y chromatin and for sex-body formation in mouse spermatocytes. We investigated the role in meiosis of the three kinases [ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia- and Rad-3-related) and DNA-PKcs (DNA-dependent-protein-kinase catalytic subunit)] known to phosphorylate H2AX in mitotic cells. We found that DNA-PKcs can be ruled out as an essential kinase in this process, whereas ATM is strictly required for the chromatin-wide phosphorylation of H2AX occurring in leptotene spermatocytes in response to DSBs. Remarkably, we discovered that Spo11 heterozygosity can rescue the prophase-I-arrest characteristic of ATM-deficient spermatocytes. Characterization of the rescued Atm-/- Spo11+/- mutant indicates that ATM is dispensable for sex-body formation and phosphorylation of H2AX in this subnuclear domain. The co-localization of ATR, phosphorylated H2AX and the sex chromatin observed in the Atm-/- Spo11+/- mutant, along with ATR transcription kinetics during the first wave of spermatogenesis, confirm and expand recent findings indicating that ATR is the kinase involved in H2AX phosphorylation in the sex body.


Molecular Cell | 2013

The DNA Translocase FANCM/MHF Promotes Replication Traverse of DNA Interstrand Crosslinks

Jing Huang; Shuo Liu; Marina Bellani; Arun K. Thazhathveetil; Chen Ling; Johan P. de Winter; Yinsheng Wang; Weidong Wang; Michael M. Seidman

The replicative machinery encounters many impediments, some of which can be overcome by lesion bypass or replication restart pathways, leaving repair for a later time. However, interstrand crosslinks (ICLs), which preclude DNA unwinding, are considered absolute blocks to replication. Current models suggest that fork collisions, either from one or both sides of an ICL, initiate repair processes required for resumption of replication. To test these proposals, we developed a single-molecule technique for visualizing encounters of replication forks with ICLs as they occur in living cells. Surprisingly, the most frequent patterns were consistent with replication traverse of an ICL, without lesion repair. The traverse frequency was strongly reduced by inactivation of the translocase and DNA binding activities of the FANCM/MHF complex. The results indicate that translocase-based mechanisms enable DNA synthesis to continue past ICLs and that these lesions are not always absolute blocks to replication.


Developmental Cell | 2013

Homologous Pairing Preceding SPO11 Mediated Double Strand Breaks in Mice

Kingsley A. Boateng; Marina Bellani; Ivan V. Gregoretti; Florencia Pratto; R. Daniel Camerini-Otero

How homologous chromosomes (homologs) find their partner, pair, and recombine during meiosis constitutes the central phenomenon in eukaryotic genetics. It is widely believed that, in most organisms, SPO11-mediated DNA double-strand breaks (DSBs) introduced during prophase I precede and are required for efficient homolog pairing. We now show that, in the mouse, a significant level of homolog pairing precedes programmed DNA cleavage. Strikingly, this early chromosome pairing still requires SPO11 but is not dependent on its ability to make DSBs or homologous recombination proteins. Intriguingly, SUN1, a protein required for telomere attachment to the nuclear envelope and for post-DSB synapsis, is also required for early pre-DSB homolog pairing. Furthermore, pre-DSB pairing at telomeres persists upon entry into prophase I and is most likely important for initiation of synapsis. Our findings suggest that the DSB-triggered homology search may mainly serve to proofread and stabilize the pre-DSB pairing of homologous chromosomes.


BMC Genomics | 2014

Integrated transcriptome analysis of mouse spermatogenesis

Gennady Margolin; Pavel P. Khil; Joongbaek Kim; Marina Bellani; R D Camerini-Otero

BackgroundDifferentiation of primordial germ cells into mature spermatozoa proceeds through multiple stages, one of the most important of which is meiosis. Meiotic recombination is in turn a key part of meiosis. To achieve the highly specialized and diverse functions necessary for the successful completion of meiosis and the generation of spermatozoa thousands of genes are coordinately regulated through spermatogenesis. A complete and unbiased characterization of the transcriptome dynamics of spermatogenesis is, however, still lacking.ResultsIn order to characterize gene expression during spermatogenesis we sequenced eight mRNA samples from testes of juvenile mice from 6 to 38 days post partum. Using gene expression clustering we defined over 1,000 novel meiotically-expressed genes. We also developed a computational de-convolution approach and used it to estimate cell type-specific gene expression in pre-meiotic, meiotic and post-meiotic cells. In addition, we detected 13,000 novel alternative splicing events around 40% of which preserve an open reading frame, and found experimental support for 159 computational gene predictions. A comparison of RNA polymerase II (Pol II) ChIP-Seq signals with RNA-Seq coverage shows that gene expression correlates well with Pol II signals, both at promoters and along the gene body. However, we observe numerous instances of non-canonical promoter usage, as well as intergenic Pol II peaks that potentially delineate unannotated promoters, enhancers or small RNA clusters.ConclusionsHere we provide a comprehensive analysis of gene expression throughout mouse meiosis and spermatogenesis. Importantly, we find over a thousand of novel meiotic genes and over 5,000 novel potentially coding isoforms. These data should be a valuable resource for future studies of meiosis and spermatogenesis in mammals.


Molecular and Cellular Biology | 2010

The Expression Profile of the Major Mouse SPO11 Isoforms Indicates that SPO11β Introduces Double Strand Breaks and Suggests that SPO11α Has an Additional Role in Prophase in both Spermatocytes and Oocytes

Marina Bellani; Kingsley A. Boateng; Dianne McLeod; R. Daniel Camerini-Otero

ABSTRACT Both in mice and humans, two major SPO11 isoforms are generated by alternative splicing: SPO11α (exon 2 skipped) and SPO11β. Thus, the alternative splicing event must have emerged before the mouse and human lineages diverged and was maintained during 90 million years of evolution, arguing for an essential role for both isoforms. Here we demonstrate that developmental regulation of alternative splicing at the Spo11 locus governs the sequential expression of SPO11 isoforms in male meiotic prophase. Protein quantification in juvenile mice and in prophase mutants indicates that early spermatocytes synthesize primarily SPO11β. Estimation of the number of SPO11 dimers (ββ/αβ/αα) in mutants in which spermatocytes undergo a normal number of double strand breaks but arrest in midprophase due to inefficient repair argues for a role for SPO11β-containing dimers in introducing the breaks in leptonema. Expression kinetics in males suggested a role for SPO11α in pachytene/diplotene spermatocytes. Nevertheless, we found that both alternative transcripts can be detected in oocytes throughout prophase I, arguing against a male-specific function for this isoform. Altogether, our data support a role for SPO11α in mid- to late prophase, presumably acting as a topoisomerase, that would be conserved in male and female meiocytes.


Journal of Cell Science | 2009

BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes

Anna Kouznetsova; Hong Wang; Marina Bellani; R. Daniel Camerini-Otero; Rolf Jessberger; Christer Höög

Transcriptional silencing of the sex chromosomes during male meiosis is regarded as a manifestation of a general mechanism active in both male and female germ cells, called meiotic silencing of unsynapsed chromatin (MSUC). MSUC is initiated by the recruitment of the tumor suppressor protein BRCA1 to the axes of unsynapsed chromosomes. We now show that Sycp3, a structural component of the chromosome axis, is required for localization of BRCA1 to unsynapsed pachytene chromosomes. Importantly, we find that oocytes carrying an excess of two to three pairs of asynapsed homologous chromosomes fail to recruit enough BRCA1 to the asynapsed axes to activate MSUC. Furthermore, loss of MSUC function only transiently rescues oocytes from elimination during early postnatal development. The fact that the BRCA1-dependent synapsis surveillance system cannot respond to higher degrees of asynapsis and is dispensable for removal of aberrant oocytes argues that MSUC has a limited input as a quality control mechanism in female germ cells.


Cancer Cell | 2017

CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes

Limin Xia; Wenjie Huang; Marina Bellani; Michael M. Seidman; Kaichun Wu; Daiming Fan; Yongzhan Nie; Yi Cai; Yang W. Zhang; Li Rong Yu; Huili Li; Cynthia A. Zahnow; Wenbing Xie; Ray Whay Chiu Yen; Feyruz V. Rassool; Stephen B. Baylin

An oncogenic role for CHD4, a NuRD component, is defined for initiating and supporting tumor suppressor gene (TSG) silencing in human colorectal cancer. CHD4 recruits repressive chromatin proteins to sites of DNA damage repair, including DNA methyltransferases where it imposes de novo DNA methylation. At TSGs, CHD4 retention helps maintain DNA hypermethylation-associated transcriptional silencing. CHD4 is recruited by the excision repair protein OGG1 for oxidative damage to interact with the damage-induced base 8-hydroxydeoxyguanosine (8-OHdG), while ZMYND8 recruits it to double-strand breaks. CHD4 knockdown activates silenced TSGs, revealing their role for blunting colorectal cancer cell proliferation, invasion, and metastases. High CHD4 and 8-OHdG levels plus low expression of TSGs strongly correlates with early disease recurrence and decreased overall survival.


Nucleic Acids Research | 2014

The dual role of HOP2 in mammalian meiotic homologous recombination

Roberto J. Pezza; Oleg N. Voloshin; Alexander A. Volodin; Kingsley A. Boateng; Marina Bellani; Alexander V. Mazin; R. Daniel Camerini-Otero

Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2–MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction of Mnd1−/− spermatocytes, which express HOP2 but apparently have inactive DMC1 and RAD51 due to lack of the HOP2–MND1 complex, exhibits a high level of chromosome synapsis and that most DSBs in these spermatocytes are repaired. This suggests that DSB repair catalyzed solely by HOP2 supports homologous chromosome pairing and synapsis. In addition, we show that in vitro HOP2 promotes the co-aggregation of ssDNA with duplex DNA, binds to ssDNA leading to unstacking of the bases, and promotes the formation of a three-strand synaptic intermediate. However, HOP2 shows distinctive mechanistic signatures as a recombinase. Namely, HOP2-mediated strand exchange does not require ATP and, in contrast to DMC1, joint molecules formed by HOP2 are more sensitive to mismatches and are efficiently dissociated by RAD54. We propose that HOP2 may act as a recombinase with specific functions in meiosis.


Ageing Research Reviews | 2017

Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging

Robert M. Brosh; Marina Bellani; Yie Liu; Michael M. Seidman

Fanconi Anemia (FA) is a rare autosomal genetic disorder characterized by progressive bone marrow failure (BMF), endocrine dysfunction, cancer, and other clinical features commonly associated with normal aging. The anemia stems directly from an accelerated decline of the hematopoietic stem cell compartment. Although FA is a complex heterogeneous disease linked to mutations in 19 currently identified genes, there has been much progress in understanding the molecular pathology involved. FA is broadly considered a DNA repair disorder and the FA gene products, together with other DNA repair factors, have been implicated in interstrand cross-link (ICL) repair. However, in addition to the defective DNA damage response, altered epigenetic regulation, and telomere defects, FA is also marked by elevated levels of inflammatory mediators in circulation, a hallmark of faster decline in not only other hereditary aging disorders but also normal aging. In this review, we offer a perspective of FA as a monogenic accelerated aging disorder, citing the latest evidence for its multi-factorial deficiencies underlying its unique clinical and cellular features.


Cancer Cell | 2016

Enhancing the Cytotoxic Effects of PARP Inhibitors with DNA Demethylating Agents – A Potential Therapy for Cancer

Nidal Muvarak; Khadiza Chowdhury; Limin Xia; Carine Robert; Eun Yong Choi; Yi Cai; Marina Bellani; Ying Zou; Zeba N. Singh; Vu H. Duong; Tyler Rutherford; Pratik Nagaria; Søren M. Bentzen; Michael M. Seidman; Maria R. Baer; Rena G. Lapidus; Stephen B. Baylin; Feyruz V. Rassool

Poly (ADP-ribose) polymerase inhibitors (PARPis) are clinically effective predominantly for BRCA-mutant tumors. We introduce a mechanism-based strategy to enhance PARPi efficacy based on DNA damage-related binding between DNA methyltransferases (DNMTs) and PARP1. In acute myeloid leukemia (AML) and breast cancer cells, DNMT inhibitors (DNMTis) alone covalently bind DNMTs into DNA and increase PARP1 tightly bound into chromatin. Low doses of DNMTis plus PARPis, versus each drug alone, increase PARPi efficacy, increasing amplitude and retention of PARP1 directly at laser-induced DNA damage sites. This correlates with increased DNA damage, synergistic tumor cytotoxicity, blunting of self-renewal, and strong anti-tumor responses, in vivo in unfavorable AML subtypes and BRCA wild-type breast cancer cells. Our combinatorial approach introduces a strategy to enhance efficacy of PARPis in treating cancer.

Collaboration


Dive into the Marina Bellani's collaboration.

Top Co-Authors

Avatar

Michael M. Seidman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jing Huang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Gichimu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kingsley A. Boateng

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge