Marina Bessarabova
Thomson Reuters
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina Bessarabova.
Journal of Clinical Investigation | 2011
Lauren L.C. Marotta; Vanessa Almendro; Andriy Marusyk; Michail Shipitsin; Janina Schemme; Sarah R. Walker; Noga Bloushtain-Qimron; Jessica Kim; Sibgat Choudhury; Reo Maruyama; Zhenhua Wu; Mithat Gonen; Laura Mulvey; Marina Bessarabova; Sung Jin Huh; Serena J. Silver; So Young Kim; So Yeon Park; Hee Eun Lee; Karen S. Anderson; Andrea L. Richardson; Tatiana Nikolskaya; Yuri Nikolsky; X. Shirley Liu; David E. Root; William C. Hahn; David A. Frank; Kornelia Polyak
Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24- cells that have stem cell-like characteristics, and CD44-CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24- human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24- breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies.
Nature Biotechnology | 2014
Charles Wang; Binsheng Gong; Pierre R. Bushel; Jean Thierry-Mieg; Danielle Thierry-Mieg; Joshua Xu; Hong Fang; Huixiao Hong; Jie Shen; Zhenqiang Su; Joe Meehan; Xiaojin Li; Lu Yang; Haiqing Li; Paweł P. Łabaj; David P. Kreil; Dalila B. Megherbi; Stan Gaj; Florian Caiment; Joost H.M. van Delft; Jos Kleinjans; Andreas Scherer; Viswanath Devanarayan; Jian Wang; Yong Yang; Hui-Rong Qian; Lee Lancashire; Marina Bessarabova; Yuri Nikolsky; Cesare Furlanello
The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is linearly correlated with treatment effect size (R20.8). Furthermore, the concordance is also affected by transcript abundance and biological complexity of the MOA. RNA-seq outperforms microarray (93% versus 75%) in DEG verification as assessed by quantitative PCR, with the gain mainly due to its improved accuracy for low-abundance transcripts. Nonetheless, classifiers to predict MOAs perform similarly when developed using data from either platform. Therefore, the endpoint studied and its biological complexity, transcript abundance and the genomic application are important factors in transcriptomic research and for clinical and regulatory decision making.
PLOS ONE | 2013
Dorothea Emig; Alexander Ivliev; Olga Pustovalova; Lee Lancashire; Svetlana Bureeva; Yuri Nikolsky; Marina Bessarabova
The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example.
Genome Biology | 2015
Wenqian Zhang; Falk Hertwig; Jean Thierry-Mieg; Wenwei Zhang; Danielle Thierry-Mieg; Jian Wang; Cesare Furlanello; Viswanath Devanarayan; Jie Cheng; Youping Deng; Barbara Hero; Huixiao Hong; Meiwen Jia; Li Li; Simon Lin; Yuri Nikolsky; André Oberthuer; Tao Qing; Zhenqiang Su; Ruth Volland; Charles Wang; May D. Wang; Junmei Ai; Davide Albanese; Shahab Asgharzadeh; Smadar Avigad; Wenjun Bao; Marina Bessarabova; Murray H. Brilliant; Benedikt Brors
BackgroundGene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.ResultsWe generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models.ConclusionsWe demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.
PLOS Genetics | 2011
Reo Maruyama; Sibgat Choudhury; Adam Kowalczyk; Marina Bessarabova; Bryan Beresford-Smith; Thomas C. Conway; Antony Kaspi; Zhenhua Wu; Tatiana Nikolskaya; Vanessa F. Merino; Pang Kuo Lo; X. Shirley Liu; Yuri Nikolsky; Saraswati Sukumar; Izhak Haviv; Kornelia Polyak
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type–specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type–specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.
Cancer Cell | 2014
Shoji Yamamoto; Zhenhua Wu; Hege G. Russnes; Shinji Takagi; Guillermo Peluffo; Charles J. Vaske; Xi Zhao; Hans Kristian Moen Vollan; Reo Maruyama; Muhammad B. Ekram; Hanfei Sun; Jee Hyun Kim; Kristopher Carver; Mattia Zucca; Jianxing Feng; Vanessa Almendro; Marina Bessarabova; Oscar M. Rueda; Yuri Nikolsky; Carlos Caldas; X. Shirley Liu; Kornelia Polyak
Recurrent mutations in histone-modifying enzymes imply key roles in tumorigenesis, yet their functional relevance is largely unknown. Here, we show that JARID1B, encoding a histone H3 lysine 4 (H3K4) demethylase, is frequently amplified and overexpressed in luminal breast tumors and a somatic mutation in a basal-like breast cancer results in the gain of unique chromatin binding and luminal expression and splicing patterns. Downregulation of JARID1B in luminal cells induces basal genes expression and growth arrest, which is rescued by TGFβ pathway inhibitors. Integrated JARID1B chromatin binding, H3K4 methylation, and expression profiles suggest a key function for JARID1B in luminal cell-specific expression programs. High luminal JARID1B activity is associated with poor outcome in patients with hormone receptor-positive breast tumors.
Cell Stem Cell | 2013
Sibgat Choudhury; Vanessa Almendro; Vanessa F. Merino; Zhenhua Wu; Reo Maruyama; Ying Su; Filipe C. Martins; Mary Jo Fackler; Marina Bessarabova; Adam Kowalczyk; Thomas C. Conway; Bryan Beresford-Smith; Geoff Macintyre; Yu Kang Cheng; Zoila Lopez-Bujanda; Antony Kaspi; Rong Hu; Judith Robens; Tatiana Nikolskaya; Vilde D. Haakensen; Stuart J. Schnitt; Pedram Argani; Gabrielle Ethington; Laura Panos; Michael P. Grant; Jason Clark; William Herlihy; S. Joyce Lin; Grace L. Chew; Erik W. Thompson
Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.
Toxicological Sciences | 2009
Russell S. Thomas; Wenjun Bao; Tzu-Ming Chu; Marina Bessarabova; Tatiana Nikolskaya; Yuri Nikolsky; Melvin E. Andersen; Russell D. Wolfinger
The process for evaluating chemical safety is inefficient, costly, and animal intensive. There is growing consensus that the current process of safety testing needs to be significantly altered to improve efficiency and reduce the number of untested chemicals. In this study, the use of short-term gene expression profiles was evaluated for predicting the increased incidence of mouse lung tumors. Animals were exposed to a total of 26 diverse chemicals with matched vehicle controls over a period of 3 years. Upon completion, significant batch-related effects were observed. Adjustment for batch effects significantly improved the ability to predict increased lung tumor incidence. For the best statistical model, the estimated predictive accuracy under honest fivefold cross-validation was 79.3% with a sensitivity and specificity of 71.4 and 86.3%, respectively. A learning curve analysis demonstrated that gains in model performance reached a plateau at 25 chemicals, indicating that the size of current data set was sufficient to provide a robust classifier. The classification results showed that a small subset of chemicals contributed disproportionately to the misclassification rate. For these chemicals, the misclassification was more closely associated with genotoxicity status than with efficacy in the original bioassay. Statistical models were also used to predict dose-response increases in tumor incidence for methylene chloride and naphthalene. The average posterior probabilities for the top models matched the results from the bioassay for methylene chloride. For naphthalene, the average posterior probabilities for the top models overpredicted the tumor response, but the variability in predictions was significantly higher. The study provides both a set of gene expression biomarkers for predicting chemically induced mouse lung tumors and a broad assessment of important experimental and analysis criteria for developing microarray-based predictors of safety-related end points.
BMC Bioinformatics | 2012
Marina Bessarabova; Alexander Ishkin; Lellean JeBailey; Tatiana Nikolskaya; Yuri Nikolsky
As it is the case with any OMICs technology, the value of proteomics data is defined by the degree of its functional interpretation in the context of phenotype. Functional analysis of proteomics profiles is inherently complex, as each of hundreds of detected proteins can belong to dozens of pathways, be connected in different context-specific groups by protein interactions and regulated by a variety of one-step and remote regulators. Knowledge-based approach deals with this complexity by creating a structured database of protein interactions, pathways and protein-disease associations from experimental literature and a set of statistical tools to compare the proteomics profiles with this rich source of accumulated knowledge. Here we describe the main methods of ontology enrichment, interactome topology and network analysis applied on a comprehensive, manually curated and semantically consistent knowledge source MetaBase and demonstrate several case studies in different disease areas.
Genome Biology | 2014
Zhenqiang Su; Hong Fang; Huixiao Hong; Leming Shi; Wenqian Zhang; Wenwei Zhang; Yanyan Zhang; Zirui Dong; Lee Lancashire; Marina Bessarabova; Xi Yang; Baitang Ning; Binsheng Gong; Joe Meehan; Joshua Xu; Weigong Ge; Roger Perkins; Matthias Fischer; Weida Tong
BackgroundGene expression microarray has been the primary biomarker platform ubiquitously applied in biomedical research, resulting in enormous data, predictive models, and biomarkers accrued. Recently, RNA-seq has looked likely to replace microarrays, but there will be a period where both technologies co-exist. This raises two important questions: Can microarray-based models and biomarkers be directly applied to RNA-seq data? Can future RNA-seq-based predictive models and biomarkers be applied to microarray data to leverage past investment?ResultsWe systematically evaluated the transferability of predictive models and signature genes between microarray and RNA-seq using two large clinical data sets. The complexity of cross-platform sequence correspondence was considered in the analysis and examined using three human and two rat data sets, and three levels of mapping complexity were revealed. Three algorithms representing different modeling complexity were applied to the three levels of mappings for each of the eight binary endpoints and Cox regression was used to model survival times with expression data. In total, 240,096 predictive models were examined.ConclusionsSignature genes of predictive models are reciprocally transferable between microarray and RNA-seq data for model development, and microarray-based models can accurately predict RNA-seq-profiled samples; while RNA-seq-based models are less accurate in predicting microarray-profiled samples and are affected both by the choice of modeling algorithm and the gene mapping complexity. The results suggest continued usefulness of legacy microarray data and established microarray biomarkers and predictive models in the forthcoming RNA-seq era.