Marina Cretich
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina Cretich.
Electrophoresis | 2000
Marcella Chiari; Marina Cretich; Laura Ceriotti; Roberto Consonni
New acrylic polymers bearing oxirane groups were synthesized to be used in the production of coated capillaries. A fully automated coating procedure was devised based on the use of diluted water solutions of these polymers. The whole procedure required less than 30 min. The new polymers rapidly adsorbed from water onto the capillary wall, thus suppressing electroosmotic flow (EOF) to a negligible value. The adsorbed coatings were stable for hundreds of hours at high pH, temperature, and in the presence of 8 M urea. Efficient separations of acidic and basic proteins were achieved in the new phases.
Analytical Chemistry | 2009
Marina Cretich; Gabriele Di Carlo; Renato Longhi; Cecilia Gotti; Natalia Spinella; Salvatore Coffa; Lucio Renna; Marcella Chiari
In this work, we report on the improvement of microarray sensitivity provided by a crystalline silicon substrate coated with thermal silicon oxide functionalized by a polymeric coating. The improvement is intended for experimental procedures and instrumentations typically involved in microarray technology, such as fluorescence labeling and a confocal laser scanning apparatus. The optimized layer of thermally grown silicon oxide (SiO(2)) of a highly reproducible thickness, low roughness, and fluorescence background provides fluorescence intensification due to the constructive interference between the incident and reflected waves of the fluorescence radiation. The oxide surface is coated by a copolymer of N,N-dimethylacrylamide, N-acryloyloxysuccinimide, and 3-(trimethoxysilyl)propyl methacrylate, copoly(DMA-NAS-MAPS), which forms, by a simple and robust procedure, a functional nanometric film. The polymeric coating with a thickness that does not appreciably alter the optical properties of the silicon oxide confers to the slides optimal binding specificity leading to a high signal-to-noise ratio. The present work aims to demonstrate the great potential that exists by combining an optimized reflective substrate with a high performance surface chemistry. Moreover, the techniques chosen for both the substrate and surface chemistry are simple, inexpensive, and amenable to mass production. The present application highlights their potential use for diagnostic applications of real clinical relevance. The coated silicon slides, tested in protein and peptide microarrays for detection of specific antibodies, lead to a 5-10-fold enhancement of the fluorescence signals in comparison to glass slides.
Biosensors and Bioelectronics | 2009
Emre Özkumur; Ayca Yalcin; Marina Cretich; Carlos A. Lopez; David A. Bergstein; Bennett B. Goldberg; Marcella Chiari; M. Selim Ünlü
A primary advantage of label-free detection methods over fluorescent measurements is its quantitative detection capability, since an absolute measure of adsorbed material facilitates kinetic characterization of biomolecular interactions. Interferometric techniques relate the optical phase to biomolecular layer density on the surface, but the conversion factor has not previously been accurately determined. We present a calibration method for phase shift measurements and apply it to surface-bound bovine serum albumin, immunoglobulin G, and single-stranded DNA. Biomolecules with known concentrations dissolved in salt-free water were spotted with precise volumes on the array surface and upon evaporation of the water, left a readily calculated mass. Using our label-free technique, the calculated mass of the biolayer was compared with the measured thickness, and we observed a linear dependence over 4 orders of magnitude. We determined that the widely accepted conversion of 1 nm of thickness corresponds to approximately 1 ng/mm(2) surface density held reasonably well for these substances and through our experiments can now be further specified for different types of biomolecules. Through accurate calibration of the dependence of thickness on surface density, we have established a relation allowing precise determination of the absolute number of molecules for single-stranded DNA and two different proteins.
Electrophoresis | 2000
Marcella Chiari; Marina Cretich; Judit Horvath
A fully automated coating procedure was devised based on adsorption of a new polymer, poly(dimethylacrylamide‐co‐allyl glycidyl ether) onto the capillary surface. The whole procedure takes less than 30 min and does not require the use of organic solvents, viscous solutions, or elevated temperature. The coating is stable even under harsh conditions such as alkaline pH, elevated temperature, and denaturant conditions that destroy most other presently available adsorbed coatings. This new adsorbed coating is highly stable and easy to produce in quantity, making it quite unique, and further making it possible to operate with any DNA sieving matrix. Finally, the above‐mentioned properties facilitate coating regeneration by a simple wash with a strongly alkaline solution, thus extending the lifetime of the capillary, a highly desirable property for any coating used in biopolymer separations.
Analytica Chimica Acta | 2008
Giulio Oliviero; Paolo Bergese; Giancarlo Canavese; Marcella Chiari; Paolo Colombi; Marina Cretich; Sonia Lucia Fiorilli; Simone Luigi Marasso; Carlo Ricciardi; Paola Rivolo; Laura E. Depero
An innovative route to activate silicon microcantilevers (MCs) for label free molecular recognition is presented. The method consists in coating the underivatized MCs with a functional ter-polymer based on N,N-dimethylacrylamide (DMA) bearing N-acryloyloxysuccinimide (NAS) and 3-(trimethoxysilyl)propyl-methacrylate (MAPS), two functional monomers that confer to the polymer the ability to react with nucleophilic species on biomolecules and with glass silanols, respectively. The polymer was deposited onto MCs by dip coating. Polymer coated MCs were tested in both static and dynamic modes of actuation, featuring detection of DNA hybridization as well as protein/protein interaction. In the dynamic experiments, focused on protein detection, the MCs showed an average mass responsivity of 0.4 Hz/pg for the first resonant mode and of 2.5 Hz/pg for the second resonant mode. The results of the static experiments, dedicated to DNA hybridization detection, allowed for direct estimation of the DNA duplex formation energetics, which resulted fully consistent with the nominal expected values. These results, together with easiness and cheapness, high versatility, and excellent stability of the recognition signal, make the presented route a reliable alternative to standard SAM functionalization (for microcantilevers (MCs) and for micro-electro-mechanical systems (MEMS) in general).
Biosensors and Bioelectronics | 2013
Paola Gagni; Laura Sola; Marina Cretich; Marcella Chiari
In this work, we present a highly sensitive immunoassay for the detection of the Alzheimers disease (AD) biomarker amyloid-beta 1-42 (Aβ42) based on a label/label-free microarray platform that utilises silicon/silicon oxide (Si/SiO2) substrates. Due to constructive interference, Si/SiO2 layered slides allow enhancement of the fluorescence intensity on the surface with significant improvements in sensitivity of detection. The same substrate allows the label-free multiplexed detection of targets using the Interferometric Reflectance Imaging Sensor (IRIS), a platform amenable to high-throughput detection of mass changes on microarray substrates. Silicon chips are coated with copoly(DMA-NAS-MAPS), a ter-copolymer made from dimethylacrylamide (DMA), 3-(trimethoxysilyl)propyl methacrylate (MAPS) and N-Acryloyloxy succinimide (NAS). Aβ42 aggregation was studied by circular dichroism (CD), and an optimal antibody pair was selected based on specificity of recognition, binding yield and spot morphology of the capture antibody on the coated silicon surface as analysed by IRIS. Finally, incubation conditions were optimised, and an unprecedented Aβ42 detection sensitivity of 73pg/mL was achieved using an artificial cerebrospinal fluid (CSF) sample. Because of their multiplexing capability, low volume sample consumption and efficient sample-to-result time for population-wide screening, microarrays are ideal tools for the identification of individuals with preclinical AD who are still cognitively healthy. The high sensitivity of this assay format, potentially coupled to a pre-concentration step or signal-enhancing modifications, could lead to a non-invasive, inexpensive diagnostic tool for population-wide screening of AD biomarkers in biological fluids other than CSF, such as serum or plasma.
Analytical Biochemistry | 2010
Marina Cretich; Valentina Sedini; Maria Pelliccia; Laura Sola; Marcella Chiari
We report on the modification of a nitrocellulose film with copoly(DMA-NAS-MAPS), a tercopolymer based on N,N-dimethylacrylamide (DMA), N-acryloyloxysuccinimide (NAS), and 3-(trimethoxysilyl)propyl-methacrylate (MAPS). The chains of this polymer, interacting with nitrocellulose fibers, introduce active ester functionalities that promote the covalent binding of short oligonucleotide fragments to the nitrocellulose thin film. Using colorimetric detection, naked eye visible DNA microarrays are developed for easy identification of foodborne pathogens. The fast and robust procedure of nitrocellulose functionalization opens the opportunity to implement this material in disposable analytical microdevices that do not require sophisticated readout systems.
Proteomics | 2009
Marina Cretich; Gabriele Di Carlo; Cinzia Giudici; Sven Pokoj; Iris Lauer; Stephan Scheurer; Marcella Chiari
Allergen microarrays are under development for a component‐resolved diagnosis of Type I (IgE‐mediated) allergies. Here we report an improved microarray coupled to microfluidics for the detection of allergen specific immunoglobulin E (IgE). The signal intensity for IgE detection in serum has been improved by using glass slides coated with a novel poly[DMA‐co‐NAS] brush copolymer which is able to immobilize allergens in their native conformation and by carrying out the incubation step in dynamic conditions. The assay, fully automated, was performed in a microcell, using a software‐controlled fluidic processor, to bring assay reagents on the surface of the array. Microfluidics turns the binding between serum immunoglobulins and immobilized allergens from a diffusion‐limited to a kinetic‐limited process by ensuring an efficient mixing of serum samples on the surface of the microarray. As a result of this, the binding of high affinity IgE antibodies is enhanced whereas that of low affinity IgG antibodies, which are present at higher concentration, is impaired paving the way to more accurate and sensitive results.
Analytical and Bioanalytical Chemistry | 2010
Marina Cretich; Daniela Breda; Marta Borghi; Laura Sola; Selim Unlu; Samuele E. Burastero; Marcella Chiari
We have recently introduced a silicon substrate for high-sensitivity microarrays, coated with a functional polymer named copoly(DMA-NAS-MAPS). The silicon dioxide thickness has been optimized to produce a fluorescence intensification due to the optical constructive interference between the incident and reflected lights of the fluorescent radiation. The polymeric coating efficiently suppresses aspecific interaction, making the low background a distinctive feature of these slides. Here, we used the new silicon microarray substrate for allergy diagnosis, in the detection of specific IgE in serum samples of subjects with sensitizations to inhalant allergens. We compared the performance of silicon versus glass substrates. Reproducibility data were measured. Moreover, receiver-operating characteristic (ROC) curves were plotted to discriminate between the allergy and no allergy status in 30 well-characterized serum samples. We found that reproducibility of the microarray on glass supports was not different from available data on allergen arrays, whereas the reproducibility on the silicon substrate was consistently better than on glass. Moreover, silicon significantly enhanced the performance of the allergen microarray as compared to glass in accurately identifying allergic patients spanning a wide range of specific IgE titers to the considered allergens.
Electrophoresis | 2001
Marcella Chiari; Marina Cretich; Miroslava Stastna; Sergey P. Radko; Andreas Chrambach
A fast and simple method for the internal coating of capillaries in capillary zone electrophoresis (CZE) is that with epoxy‐poly(dimethylacrylamide) (EPDMA). Duration of coating by that method is 30 min, compared with that of 24 h when using uncross‐linked polyacrylamide (PA) under otherwise identical conditions. Under the conditions used for the CZE of proteins (pH 9.0, 2% polyethylene glycol), the capillary coating with EPDMA is stable for at least 50 consecutive runs as judged by the constancy of low electroosmotic flow, equalling the stability of coating achieved by PA. Protein mobilities and protein peak asymmetry (suggestive of reversible interaction with the capillary wall) are also found to be the same in EPDMA and PA coated capillaries. Differences between EPDMA and PA coating also exist: The former is unstable upon lowering the ionic strength of the buffer to 0.003, upon the addition of sodium dodecyl sulfate (SDS) to the buffer and in application to the hydrophobic analyte, polystyrene carboxylate.