Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Di Domenico is active.

Publication


Featured researches published by Marina Di Domenico.


The EMBO Journal | 2001

PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells

Gabriella Castoria; Antimo Migliaccio; Antonio Bilancio; Marina Di Domenico; Antonietta de Falco; Maria Lombardi; Roberto Fiorentino; Lilian Varricchio; Maria Vittoria Barone; Ferdinando Auricchio

The p85‐associated phosphatidylinositol (PI) 3‐kinase/Akt pathway mediates the oestradiol‐induced S‐phase entry and cyclin D1 promoter activity in MCF‐7 cells. Experiments with Src, p85α and Akt dominant‐negative forms indicate that in oestradiol‐treated cells these signalling effectors target the cyclin D1 promoter. Oestradiol acutely increases PI3‐kinase and Akt activities in MCF‐7 cells. In NIH 3T3 cells expressing ERα, a dominant‐negative p85 suppresses hormone stimulation of Akt. The Src inhibitor, PP1, prevents hormone stimulation of Akt and PI3‐kinase activities in MCF‐7 cells. In turn, stimulation of Src activity is abolished in ERα‐expressing NIH 3T3 fibroblasts by co‐transfection of the dominant‐negative p85α and in MCF‐7 cells by the PI3‐kinase inhibitor, LY294002. These findings indicate a novel reciprocal cross‐talk between PI3‐kinase and Src. Hormone stimulation of MCF‐7 cells rapidly triggers association of ERα with Src and p85. In vitro these proteins are assembled in a ternary complex with a stronger association than that of the binary complexes composed by the same partners. The ternary complex probably favours hormone activation of Src‐ and PI3‐kinase‐dependent pathways, which converge on cell cycle progression.


Cancer Research | 2005

Steroid receptor regulation of epidermal growth factor signaling through Src in breast and prostate cancer cells: steroid antagonist action.

Antimo Migliaccio; Marina Di Domenico; Gabriella Castoria; Merlin Nanayakkara; Maria Lombardi; Antonietta de Falco; Antonio Bilancio; Lilian Varricchio; Alessandra Ciociola; Ferdinando Auricchio

Under conditions of short-term hormone deprivation, epidermal growth factor (EGF) induces DNA synthesis, cytoskeletal changes, and Src activation in MCF-7 and LNCaP cells. These effects are drastically inhibited by pure estradiol or androgen antagonists, implicating a role of the steroid receptors in these findings. Interestingly, EGF triggers rapid association of Src with androgen receptor (AR) and estradiol receptor alpha (ERalpha) in MCF-7 cells or ERbeta in LNCaP cells. Here, we show that, through EGF receptor (EGFR) and erb-B2, EGF induces tyrosine phosphorylation of ER preassociated with AR, thereby triggering the assembly of ER/AR with Src and EGFR. Remarkably, experiments in Cos cells show that this complex stimulates EGF-triggered EGFR tyrosine phosphorylation. In turn, estradiol and androgen antagonists, through the Src-associated receptors, prevent Src activation by EGF and heavily reduce EGFR tyrosine phosphorylation and the subsequent multiple effects, including DNA synthesis and cytoskeletal changes in MCF-7 cells. In addition, knockdown of ERalpha or AR gene by small interfering RNA (siRNA) almost abolishes EGFR tyrosine phosphorylation and DNA synthesis in EGF-treated MCF-7 cells. The present findings reveal that steroid receptors have a key role in EGF signaling. EGFR tyrosine phosphorylation, depending on Src, is a part of this mechanism. Understanding of EGF-triggered growth and invasiveness of mammary and prostate cancer cells expressing steroid receptors is enhanced by this report, which reveals novel aspects of steroid receptor action.


Journal of Cell Biology | 2003

Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action

Gabriella Castoria; Maria Lombardi; Maria Vittoria Barone; Antonio Bilancio; Marina Di Domenico; Daniela Bottero; Flavia Vitale; Antimo Migliaccio; Ferdinando Auricchio

In NIH3T3 cells, 0.001 nM of the synthetic androgen R1881 induces and stimulates association of androgen receptor (AR) with Src and phosphatidylinositol 3-kinase (Pl3-kinase), respectively, thereby triggering S-phase entry. 10 nM R1881 stimulates Rac activity and membrane ruffling in the absence of the receptor–Src–PI3-kinase complex assembly. The antiandrogen Casodex and specific inhibitors of Src and PI3-kinase prevent both hormonal effects, DNA synthesis and cytoskeletal changes. Neither low nor high R1881 concentration allows receptor nuclear translocation and receptor-dependent transcriptional activity in fibroblasts, although they harbor the classical murine AR. The very low amount of AR in NIH3T3 cells (7% of that present in LNCaP cells) activates the signaling pathways, but apparently is not sufficient to stimulate gene transcription. This view is supported by the appearance of receptor nuclear translocation as well as receptor-mediated transcriptional activity after overexpression of AR in fibroblasts. In addition, AR-negative Cos cells transiently transfected with a very low amount of hAR cDNA respond to low and high R1881 concentrations with signaling activation. Interestingly, they do not show significant transcriptional activation under the same experimental conditions. Fibroblasts are the first example of cells that respond to steroid hormones with activation of signaling pathways in the absence of endogenous receptor transcriptional activity. The data reported also show that hormone concentration can be crucial in determining the type of cell responsiveness.


Oncogene | 2001

cAMP signaling selectively influences Ras effectors pathways

Ilaria Ciullo; Graciana Diez-Roux; Marina Di Domenico; Antimo Migliaccio; Enrico V. Avvedimento

Thyrotropin (TSH) stimulates survival and growth of thyroid cells via a seven transmembrane G protein-coupled receptor. TSH elevates the intracellular cyclic AMP (cAMP) levels activating protein kinase A (PKA). Recent evidence indicates that p21 Ras is required for TSH-induced mitogenesis, but the molecular mechanism(s) is not known. Here we report that Ras p21 activity is necessary for the Go- G1 transition in TSH induced cycle and that the downstream effector of Ras upon TSH signaling is p85-p110 PI3K. We show that PI3K inhibitors block TSH-induced DNA synthesis, cAMP-PKA stimulate the formation of the complex PI3K-p21 Ras and reduce the complex Ras-Raf1 in thyroid and other cells types. Moreover, PKA phosphorylates immunoprecipitated p85 and PKA phosphorylation of cell extracts significantly stimulates the formation of the complex PI3K-Ras. We suggest that PKA phosphorylates p85 and stabilizes the complex p110-p85, enhancing the interaction PI3K and p21 Ras. Simultaneously, cAMP inhibits Raf-1-ERK signaling by decreasing Raf1 availability to Ras. Under these circumstances PI3K signaling is favored. These results indicate that PI3K is an important mediator of Ras effects in cAMP-induced proliferation and illustrates how cAMP can selectively influence Ras effector pathways.


Annals of the New York Academy of Sciences | 2006

Crosstalk between EGFR and Extranuclear Steroid Receptors

Antimo Migliaccio; Gabriella Castoria; Marina Di Domenico; Alessandra Ciociola; Maria Lombardi; Antonietta de Falco; Merlin Nanayakkara; Daniela Bottero; Rosina De Stasio; Lilian Varricchio; Ferdinando Auricchio

Abstract:  Epidermal growth factor (EGF) stimulates DNA synthesis and cytoskeletal rearrangement in human breast cancer (MCF‐7) and human prostate cancer (LNCaP) cells. Both effects are inhibited by estrogen (ICI 182,780) and androgen (Casodex) antagonists. This supports the view that crosstalk exists between EGF and estradiol (ER) and androgen (AR) receptors and suggests that these receptors are directly involved in the EGF action. Our recent work shows that EGF stimulates ER phosphorylation on tyrosine and promotes the association of a complex between EGFR, AR/ER, and the kinase Src. The complex assembly triggers Src activity, epidermal growth factor receptor (EGFR) phosphorylation on tyrosine, and the EGF‐dependent signaling pathway activation. In these cells, the AR/ER/Src complex is required for the EGF action, as the growth factor effects are abolished upon receptor silencing by specific SiRNAs and steroid antagonists or Src inhibition by the kinase inhibitor PP2.


Annals of the New York Academy of Sciences | 2006

Src is an initial target of sex steroid hormone action.

Antimo Migliaccio; Gabriella Castoria; Marina Di Domenico; Antonietta de Falco; Antonio Bilancio; Ferdinando Auricchio

Abstract: Recent observations that steroids use pathways universally known to be regulated by growth factors and interleukins highlight the following points: (1) Steroid stimulation of the canonical pathway Src/Ras/Erk signaling from membrane to nuclei or its single members has been observed in different cell types including human cancer‐derived cells, neurons, osteoblasts, osteocytes, and endothelial cells. This stimulation has been reconstituted and analyzed in transiently transfected cells. (2) Cellular context and intracellular localization of receptors are crucial in determining the biological effects evoked by this hormonal stimulation: proliferation, protection from apoptosis, and vasorelaxation. (3) Classical steroid receptors localized in the extranuclear compartment directly and, in some cases, simultaneously interact with Src. They are capable of unexpected cross talks responsible for the observed effects. (4) Other signaling pathways including P13K/AKT are also stimulated by steroids. The aim of future work will be to arrive at an integrated general view of the different signaling pathways activated by steroids and to analyze the concert between these pathways and the hormonal transcriptional action. This general view should be simultaneously verified in different cell contexts, under different physiologic and pathologic conditions. We expect that the new technologies, above all gene and protein microarray, will make this goal feasible.


American Journal of Human Genetics | 2009

A Missense Mutation in CASK Causes FG Syndrome in an Italian Family

Giulio Piluso; Francesca D'Amico; Valentina Saccone; Ettore Bismuto; Ida Luisa Rotundo; Marina Di Domenico; Stefania Aurino; Charles E. Schwartz; Giovanni Neri; Vincenzo Nigro

First described in 1974, FG syndrome (FGS) is an X-linked multiple congenital anomaly/mental retardation (MCA/MR) disorder, characterized by high clinical variability and genetic heterogeneity. Five loci (FGS1-5) have so far been linked to this phenotype on the X chromosome, but only one gene, MED12, has been identified to date. Mutations in this gene account for a restricted number of FGS patients with a more distinctive phenotype, referred to as the Opitz-Kaveggia phenotype. We report here that a p.R28L (c.83G-->T) missense mutation in CASK causes FGS phenotype in an Italian family previously mapped to Xp11.4-p11.3 (FGS4). The identified missense mutation cosegregates with the phenotype in this family and is absent in 1000 control X chromosomes of the same ethnic origin. An extensive analysis of CASK protein functions as well as structural and dynamic studies performed by molecular dynamics (MD) simulation did not reveal significant alterations induced by the p.R28L substitution. However, we observed a partial skipping of the exon 2 of CASK, presumably a consequence of improper recognition of exonic splicing enhancers (ESEs) induced by the c.83G-->T transversion. CASK is a multidomain scaffold protein highly expressed in the central nervous system (CNS) with specific localization to the synapses, where it forms large signaling complexes regulating neurotransmission. We suggest that the observed phenotype is most likely a consequence of an altered CASK expression profile during embryogenesis, brain development, and differentiation.


Molecular and Cellular Biology | 2004

Role of Atypical Protein Kinase C in Estradiol-Triggered G1/S Progression of MCF-7 Cells

Gabriella Castoria; Antimo Migliaccio; Marina Di Domenico; Maria Lombardi; Antonietta de Falco; Lilian Varricchio; Antonio Bilancio; Maria Vittoria Barone; Ferdinando Auricchio

ABSTRACT Expression of a dominant negative atypical protein kinase C (aPKC), PKCζ, prevents nuclear translocation of extracellular regulated kinase 2 (ERK-2), p27 nuclear reduction, and DNA synthesis induced by estradiol in human mammary cancer-derived MCF-7 cells. aPKC action upstream of these events has been analyzed. In hormone-stimulated NIH 3T3 and Cos cells ectopically expressing human estrogen receptor alpha (hERα), aPKC is activated by phosphatidylinositol 3-kinase (PI 3-kinase) and, in turn, controls the Ras/MEK-1/ERK cascade. In MCF-7 and Cos cells stimulated by hormone, PI 3-kinase activates PKCζ by Thr410 phosphorylation. Serine phosphorylation of PKCζ is simultaneously induced. PKCζ activation leads to recruitment of Ras to a multimolecular complex that also includes hERα, Src, PI 3-kinase, and aPKC. We propose that PKCζ pushes Ras and the signaling complex close together in such a way that it facilitates the Src-dependent Ras activation. This activation is crucial for the interplay between estradiol-triggered signaling and cell cycle machinery.


Steroids | 2004

Rapid signalling pathway activation by androgens in epithelial and stromal cells

Gabriella Castoria; Maria Lombardi; Maria Vittoria Barone; Antonio Bilancio; Marina Di Domenico; Antonietta de Falco; Lilian Varricchio; Daniela Bottero; Merlin Nanayakkara; Antimo Migliaccio; Ferdinando Auricchio

Estradiol rapidly activates Src as well as the Src-dependent pathway in human mammary cancer-derived MCF-7 cells, in human prostate cancer-derived LNCaP cells and in Cos cells transiently expressing hERs [EMBO J. 15 (1996) 1292; EMBO J. 17 (1998) 2008]. In addition, estradiol immediately stimulates, yes, an ubiquitous member of the Src kinase family, in human colon carcinoma-derived Caco-2 cells [Cancer Res. 56 (1996) 4516]. Progestins and androgens activate the same pathway in human mammary and prostate cancer-derived cells [EMBO J. 17 (1998) 2008; EMBO J. 19 (2000) 5406]. We observed that estradiol also stimulates the phosphatidylinositol-3-kinase (PI3K)/AKT pathway in MCF-7 cells [EMBO J. 20 (2001) 6050]. In these cells, activation of the Src- and the PI3 K-dependent pathways is simultaneous and mediated by direct interactions of the two kinases with ERalpha. The signalling pathway activation by sex-steroid hormones leads to DNA synthesis and cell growth in human mammary and prostate cancer-derived cells [EMBO J. 19 (2000) 5406; EMBO J. 20 (2001) 6050; EMBO J. 18 (1999) 2500]. Furthermore, androgen stimulation of NIH3T3 fibroblasts activates the same pathways triggered by this hormone in LNCaP cells and promotes the S-phase entry or cytoskeleton changes in these cells [J. Cell Biol. 161 (2003) 547]. All the described effects are rapid and require classic steroid receptors, but, surprisingly, not their transcriptional activity. Indeed, a transcriptionally inactive mutant of hER mediates the estrogen-stimulated DNA synthesis of NIH3T3 fibroblasts [EMBO J. 18 (1999) 2500]. Furthermore, AR in NIH3T3 cells does not enter nuclei and is unable to respond to the hormone with transcription stimulation, whereas it activates signaling pathways and triggers important biological responses. Signaling pathway activation by steroids has also been described by other groups under different experimental conditions and/or in different cell types. In these cells, steroid stimulation triggers various effects, such as neuroprotection, vasorelaxation or bone protection [J. Neurosci. Res. 60 (2000) 321; Nature 407 (2000) 538; J. Cell Biochem. 76 (1999) 206]. Analysis of the mechanisms responsible for the hormone-dependent and steroid receptor-mediated pathway activation in epithelial as well as stromal cells reveals immediate association of steroid receptors with extranuclear signaling effectors [EMBO J. 17 (1998) 2008; Cancer Res. 56 (1996) 4516; EMBO J. 19 (2000) 5406; EMBO J. 20 (2001) 6050; J. Cell Biol. 161 (2003) 547]. These results further highlight the central role of the hormone-regulated protein-protein interactions in the steroid action. They also offer the possibility of interfering with important activities of hormones, such as proliferation or survival, cytoskeleton changes as well as invasiveness and vasorelaxation, without affecting the steroid effects that depend on receptor transcriptional activity.


Cancer Biology & Therapy | 2012

pEGFR-Tyr 845 expression as prognostic factors in oral squamous cell carcinoma: A tissue-microarray study with clinic-pathological correlations

Gabriella Aquino; Giuseppe Pannone; Angela Santoro; Giuseppina Liguori; Renato Franco; Rosario Serpico; Gianluca Florio; Alfredo De Rosa; Marilena Mattoni; Valentina Cozza; Gerardo Botti; Simona Losito; F. Longo; Stefania Staibano; Giovanni Cuda; Lorenzo Lo Muzio; Carolina Sbordone; Pantaleo Bufo; Anna Grimaldi; Michele Caraglia; Marina Di Domenico

The EGFR (epidermal growth factor receptor) a member of the family of transmembrane protein kinase receptors known as the erbB family shows a significant correlation with the presence of metastases and poorly differentiated oral cancer. Aim of the present work is to define the key-role of EGFR in oral cancer prognosis. We have analyzed the EGFR expression on 149 cases of oral squamous cell cancers (OSCC) and we have found that it was poorly expressed in normal oral epithelium, but its expression was significantly increased in OSCCs. Moreover, we have recorded that both pEGFR-Tyr 845 and pEGFR-Tyr 1068 were mainly distributed in high histological grading and in advanced stages. Western blotting has confirmed the total absence of EGFR phosphorylation in normal oral epithelium and the higher level of protein phosphorylation in representative cases of OSCCs. The EGF-R amplification was found by fluorescence in situ hybridization (FISH) in 14% of OSCC; interestingly, EGF-R amplification was mainly observed in OSCC with higher histological grading (G2 and G3) and advanced stage (pT4) sub-groups. Kaplan-Meyer survival analysis suggested that patients with positive pEGFR-Tyr 845 tumors had a worse prognosis and were bad responders to chemotherapy. These results confirm the central role of EGF-R activation status as a prognostic biomarker in OSCC.

Collaboration


Dive into the Marina Di Domenico's collaboration.

Top Co-Authors

Avatar

Antonia Feola

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Antimo Migliaccio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Mario Santini

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Alfonso Fiorelli

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Ferdinando Auricchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gabriella Castoria

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonietta Rizzo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Antonietta de Falco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonio Bilancio

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Angelina Di Carlo

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge