Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Elliott is active.

Publication


Featured researches published by Marina Elliott.


eLife | 2015

Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa

Lee R. Berger; John Hawks; Darryl J. de Ruiter; Steven E. Churchill; Peter Schmid; Lucas K. Delezene; Tracy L. Kivell; Heather M. Garvin; Scott A. Williams; Jeremy M. DeSilva; Matthew M. Skinner; Charles M. Musiba; Noel Cameron; Trenton W. Holliday; William E. H. Harcourt-Smith; Rebecca Rogers Ackermann; Markus Bastir; Barry Bogin; Debra R. Bolter; Juliet K. Brophy; Zachary Cofran; Kimberly A. Congdon; Andrew S. Deane; Mana Dembo; Michelle S.M. Drapeau; Marina Elliott; Elen M Feuerriegel; Daniel García-Martínez; David J. Green; Alia N. Gurtov

Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa. DOI: http://dx.doi.org/10.7554/eLife.09560.001


eLife | 2015

Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa

Paul H.G.M. Dirks; Lee R. Berger; Eric M. Roberts; Jan D. Kramers; John Hawks; Patrick S. Randolph-Quinney; Marina Elliott; Charles M. Musiba; Steven E. Churchill; Darryl J. de Ruiter; Peter Schmid; Lucinda Backwell; G.A. Belyanin; Pedro Boshoff; K Lindsay Hunter; Elen M Feuerriegel; Alia N. Gurtov; James du G Harrison; Rick Hunter; Ashley Kruger; Hannah Morris; Tebogo V. Makhubela; Becca Peixotto; Steven Tucker

We describe the physical context of the Dinaledi Chamber within the Rising Star cave, South Africa, which contains the fossils of Homo naledi. Approximately 1550 specimens of hominin remains have been recovered from at least 15 individuals, representing a small portion of the total fossil content. Macro-vertebrate fossils are exclusively H. naledi, and occur within clay-rich sediments derived from in situ weathering, and exogenous clay and silt, which entered the chamber through fractures that prevented passage of coarser-grained material. The chamber was always in the dark zone, and not accessible to non-hominins. Bone taphonomy indicates that hominin individuals reached the chamber complete, with disarticulation occurring during/after deposition. Hominins accumulated over time as older laminated mudstone units and sediment along the cave floor were eroded. Preliminary evidence is consistent with deliberate body disposal in a single location, by a hominin species other than Homo sapiens, at an as-yet unknown date. DOI: http://dx.doi.org/10.7554/eLife.09561.001


eLife | 2017

The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa

Paul H.G.M. Dirks; Eric M. Roberts; Hannah L. Hilbert-Wolf; Jan Kramers; John Hawks; Anthony Dosseto; Mathieu Duval; Marina Elliott; Mary Evans; Rainer Grün; John Hellstrom; Andy I.R. Herries; Renaud Joannes-Boyau; Tebogo V. Makhubela; Christa Placzek; Jessie Robbins; Carl Spandler; Jelle Wiersma; Jon D. Woodhead; Lee R. Berger

New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of 222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/–70 ka, whilst a minimum age scenario yields an average age of 200 +70/–61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphology. DOI: http://dx.doi.org/10.7554/eLife.24231.001


Biology Letters | 2009

Fordisc and the determination of ancestry from cranial measurements

Marina Elliott; Mark Collard

Determining the ancestry of unidentified human remains is a major task for bioarchaeologists and forensic anthropologists. Here, we report an assessment of the computer program that has become the main tool for accomplishing this task. Called Fordisc, the program determines ancestry through discriminant function analysis of cranial measurements. We evaluated the utility of Fordisc with 200 specimens of known ancestry. We ran the analyses with and without the test specimens source population included in the programs reference sample, and with and without specifying the sex of the test specimen. We also controlled for the possibility that the number of variables employed affects the programs ability to attribute ancestry. The results of the analyses suggest that Fordiscs utility in research and medico-legal contexts is limited. Fordisc will only return a correct ancestry attribution when an unidentified specimen is more or less complete, and belongs to one of the populations represented in the programs reference samples. Even then Fordisc can be expected to classify no more than 1 per cent of specimens with confidence.


eLife | 2017

Homo naledi and Pleistocene hominin evolution in subequatorial Africa

Lee R. Berger; John Hawks; Paul H.G.M. Dirks; Marina Elliott; Eric M. Roberts

New discoveries and dating of fossil remains from the Rising Star cave system, Cradle of Humankind, South Africa, have strong implications for our understanding of Pleistocene human evolution in Africa. Direct dating of Homo naledi fossils from the Dinaledi Chamber (Berger et al., 2015) shows that they were deposited between about 236 ka and 335 ka (Dirks et al., 2017), placing H. naledi in the later Middle Pleistocene. Hawks and colleagues (Hawks et al., 2017) report the discovery of a second chamber within the Rising Star system (Dirks et al., 2015) that contains H. naledi remains. Previously, only large-brained modern humans or their close relatives had been demonstrated to exist at this late time in Africa, but the fossil evidence for any hominins in subequatorial Africa was very sparse. It is now evident that a diversity of hominin lineages existed in this region, with some divergent lineages contributing DNA to living humans and at least H. naledi representing a survivor from the earliest stages of diversification within Homo. The existence of a diverse array of hominins in subequatorial comports with our present knowledge of diversity across other savanna-adapted species, as well as with palaeoclimate and paleoenvironmental data. H. naledi casts the fossil and archaeological records into a new light, as we cannot exclude that this lineage was responsible for the production of Acheulean or Middle Stone Age tool industries. DOI: http://dx.doi.org/10.7554/eLife.24234.001


Archaeological and Anthropological Sciences | 2016

Estimating body mass from postcranial variables: an evaluation of current equations using a large known-mass sample of modern humans

Marina Elliott; Helen K. Kurki; Darlene A. Weston; Mark Collard

Many inferences in palaeoanthropology and bioarchaeology rely on estimates of body mass from skeletal material. Body mass estimation is also becoming an area of interest for forensic anthropologists. The most common approach to estimating body mass from the skeleton involves measurements of the postcranium, and a number of equations have been developed for femoral head size and stature plus bi-iliac breadth. These equations have become standard in biological anthropology, but they have rarely been tested on individuals of known mass. In addition, the effects of several assumptions involved in the application of the equations have not been rigorously investigated. Accordingly, this study employed CT scans from a sample of 253 adult modern humans of known body mass to test the accuracy of the most widely used postcranial body mass estimation equations. The results were then used to evaluate several claims concerning the performance of the equations relative to one another. Most of the equations that were tested met the criteria for acceptance as reliable estimators with the male and the combined-sex samples. However, females were not estimated as reliably. In addition, the equations did not always perform consistently or as expected. Overall, our results suggest that estimating body mass with the postcranial equations that are currently available requires more caution than is usually exercised.


eLife | 2017

New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

John Hawks; Marina Elliott; Peter Schmid; Steven E. Churchill; Darryl J. de Ruiter; Eric M. Roberts; Hannah L. Hilbert-Wolf; Heather M. Garvin; Scott A. Williams; Lucas K. Delezene; Elen M Feuerriegel; Patrick S. Randolph-Quinney; Tracy L. Kivell; Myra F. Laird; Gaokgatlhe Tawane; Jeremy M. DeSilva; Shara E. Bailey; Juliet K. Brophy; Marc R. Meyer; Matthew M. Skinner; Matthew W. Tocheri; Caroline VanSickle; Christopher S. Walker; Timothy L. Campbell; Brian F. Kuhn; Ashley Kruger; Steven Tucker; Alia N. Gurtov; Nompumelelo Hlophe; Rick Hunter

The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species. DOI: http://dx.doi.org/10.7554/eLife.24232.001


Archaeological and Anthropological Sciences | 2016

Estimating body mass from skeletal material: new predictive equations and methodological insights from analyses of a known-mass sample of humans

Marina Elliott; Helen K. Kurki; Darlene A. Weston; Mark Collard

Estimating body mass from skeletal material is a key task for many biological anthropologists. As a result, several sets of regression equations have been derived for cranial and postcranial material. The equations have been applied to a wide range of specimens, but several factors suggest they may not be as reliable as generally assumed. Specifically, since many of the equations were derived from small reference samples using proxies for key variables and/or mean data, the nature of the relationship between the skeletal variables and body mass has often not been adequately demonstrated. In addition, few of the equations have been validated on known samples, making their accuracy and precision uncertain. Lastly, because no study has used cranial and postcranial material from the same individuals, the two approaches have never been systematically compared. The present study responded to these issues by deriving new regression equations from cranial and postcranial material using a large sample of modern humans of known-mass and associated skeletal variables measured from CT data. The equations were then tested on an independent sample, also of known mass. The results show that the newly derived equations estimate mass more accurately than existing equations for most variables. However, improvements were modest and accuracy rates remained relatively low. In addition, variables that had previously been argued to be ideal predictors were not the most accurate, and the current criteria used to assess equations did not ensure reliability. Overall, the results suggest that body mass estimates must be used cautiously and that further research is required.


American Journal of Physical Anthropology | 2014

Estimating fossil hominin body mass from cranial variables: An assessment using CT data from modern humans of known body mass

Marina Elliott; Helen K. Kurki; Darlene A. Weston; Mark Collard

Body mass estimates are integral to a wide range of inferences in paleoanthropology. Most techniques employ postcranial elements, but predictive equations based on cranial variables have also been developed. Three studies currently provide regression equations for estimating mass from cranial variables, but none of the equations has been tested on samples of known mass. Nor have the equations been compared to each other in terms of performance. Consequently, this study assessed the performance of existing cranial equations using computed tomography scans from a large, documented sample of modern humans of known body mass. Virtual models of the skull were reconstructed and measured using computer software, and the resulting variables were entered into three sets of published regression equations. Estimated and known body masses were then compared. For most equations, prediction errors were high and few individuals were estimated within ±20% of their known mass. Only one equation satisfied the accuracy criteria. In addition, variables that had been previously argued to be good predictors of mass in hominins, including humans, did not estimate mass reliably. These results have important implications for paleoanthropology. In particular, they emphasize the need to develop new equations for estimating fossil hominin body mass from cranial variables.


International Journal of Paleopathology | 2018

Root grooves on two adjacent anterior teeth of Australopithecus africanus

Ian Towle; Joel D. Irish; Marina Elliott; Isabelle De Groote

Tooth root grooves and other ante-mortem dental tissue loss, not associated with caries found on or near the cementoenamel junction (CEJ), are commonly termed non-carious cervical lesions. Three main processes are implicated in forming these lesions: abrasion, dental erosion, and abfraction. As yet, these lesions have not been described in non-Homo hominins. In this study, South African fossil hominin collections were examined for evidence of any type of non-carious cervical lesion. Only one individual shows ante-mortem root grooves consistent with non-carious cervical lesions. Two teeth, a mandibular right permanent lateral incisor (STW 270) and canine (STW 213), belonging to the same Australopithecus africanus individual, show clear ante-mortem grooves on the labial root surface. These lesions start below the CEJ, extend over a third of the way toward the apex, and taper to a point towards the lingual side. The characteristics of these grooves suggest the predominant aetiology was erosive wear. In addition, they are extremely similar to clinical examples of dental erosion. These are the oldest hominin examples of non-carious cervical lesions and the first described in a genus other than Homo. Further, the lesions suggest that this individual regularly processed and consumed acidic food items.

Collaboration


Dive into the Marina Elliott's collaboration.

Top Co-Authors

Avatar

Mark Collard

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar

John Hawks

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lee R. Berger

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley Kruger

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darlene A. Weston

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge