Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Leterrier is active.

Publication


Featured researches published by Marina Leterrier.


Plant Science | 2011

Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress

Francisco J. Corpas; Marina Leterrier; Raquel Valderrama; Morad Airaki; Mounira Chaki; José M. Palma; Juan B. Barroso

Nitric oxide (NO), a free radical generated in plant cells, belongs to a family of related molecules designated as reactive nitrogen species (RNS). When an imbalance of RNS takes place for any adverse environmental circumstances, some of these molecules can cause direct or indirect damage at the cellular or molecular level, promoting a phenomenon of nitrosative stress. Thus, this review will emphasize the recent progress in understanding the function of NO and its production under adverse environmental conditions.


Plant Cell and Environment | 2012

Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress

Morad Airaki; Marina Leterrier; Rosa M. Mateos; Raquel Valderrama; Mounira Chaki; Juan B. Barroso; Luis A. del Río; José M. Palma; Francisco J. Corpas

Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell.


Plant Physiology | 2005

Peroxisomal Monodehydroascorbate Reductase. Genomic Clone Characterization and Functional Analysis under Environmental Stress Conditions

Marina Leterrier; Francisco J. Corpas; Juan B. Barroso; Luisa M. Sandalio; Luis A. del Río

In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5′ untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of peroxisomal MDAR 1 transcripts in pea plants grown under the mentioned stress conditions. These findings show that the peroxisomal MDAR 1 has a differential regulation that could be indicative of its specific function in peroxisomes. All these biochemical and molecular data represent a significant step to understand the specific physiological role of each MDAR isoenzyme and its participation in the antioxidant mechanisms of plant cells.


Journal of Experimental Botany | 2011

Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings

Mounira Chaki; Raquel Valderrama; Ana Fernández-Ocaña; Alfonso Carreras; María V. Gómez-Rodríguez; José Rafael Pedrajas; Juan C. Begara-Morales; Beatriz Sánchez-Calvo; Francisco Luque; Marina Leterrier; Francisco J. Corpas; Juan B. Barroso

Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light intensity, continuous light, and continuous darkness), key components of the metabolism of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including the enzyme activities L-arginine-dependent nitric oxide synthase (NOS), S-nitrosogluthathione reductase (GSNOR), nitrate reductase (NR), catalase, and superoxide dismutase, the content of lipid hydroperoxide, hydrogen peroxide, S-nitrosothiols (SNOs), the cellular level of NO, GSNO, and GSNOR, and protein tyrosine nitration [nitrotyrosine (NO2-Tyr)] were analysed. Among the stress conditions studied, mechanical wounding was the only one that caused a down-regulation of NOS and GSNOR activities, which in turn provoked an accumulation of SNOs. The analyses of the cellular content of NO, GSNO, GSNOR, and NO2-Tyr by confocal laser scanning microscopy confirmed these biochemical data. Therefore, it is proposed that mechanical wounding triggers the accumulation of SNOs, specifically GSNO, due to a down-regulation of GSNOR activity, while NO2-Tyr increases. Consequently a process of nitrosative stress is induced in sunflower seedlings and SNOs constitute a new wound signal in plants.


Plant Cell and Environment | 2011

High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration

Mounira Chaki; Raquel Valderrama; Ana Fernández-Ocaña; Alfonso Carreras; María V. Gómez-Rodríguez; Javier López-Jaramillo; Juan C. Begara-Morales; Beatriz Sánchez-Calvo; Francisco Luque; Marina Leterrier; Francisco J. Corpas; Juan B. Barroso

High temperature (HT) is considered a major abiotic stress that negatively affects both vegetative and reproductive growth. Whereas the metabolism of reactive oxygen species (ROS) is well established under HT, less is known about the metabolism of reactive nitrogen species (RNS). In sunflower (Helianthus annuus L.) seedlings exposed to HT, NO content as well as S-nitrosoglutathione reductase (GSNOR) activity and expression were down-regulated with the simultaneous accumulation of total S-nitrosothiols (SNOs) including S-nitrosoglutathione (GSNO). However, the content of tyrosine nitration (NO(2) -Tyr) studied by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and by confocal laser scanning microscope was induced. Nitroproteome analysis under HT showed that this stress induced the protein expression of 13 tyrosine-nitrated proteins. Among the induced proteins, ferredoxin-NADP reductase (FNR) was selected to evaluate the effect of nitration on its activity after heat stress and in vitro conditions using 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent, the FNR activity being inhibited. Taken together, these results suggest that HT augments SNOs, which appear to mediate protein tyrosine nitration, inhibiting FNR, which is involved in the photosynthesis process.


Journal of Experimental Botany | 2013

Protein tyrosine nitration in pea roots during development and senescence

Juan C. Begara-Morales; Mounira Chaki; Beatriz Sánchez-Calvo; Capilla Mata-Pérez; Marina Leterrier; José M. Palma; Juan B. Barroso; Francisco J. Corpas

Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence.


Plant Physiology | 2003

Sugar-regulated expression of a putative hexose transport gene in grape.

Rossitza Atanassova; Marina Leterrier; Cécile Gaillard; Alice Agasse; Emeric Sagot; Pierre Coutos-Thévenot; Serge Delrot

Different lengths of the promoter of grape (Vitis vinifera) VvHT1 (Hexose Transporter 1) gene, which encodes a putative hexose transporter expressed during the ripening of grape, have been transcriptionally fused to the β-glucuronidase reporter gene. In transgenic tobacco (Nicotiana tabacum) transformed with these constructs,VvHT1 promoters were clearly responsible for the sink organ preferential expression. The potential sugar effectors ofVvHT1 promoter were studied in tobacco cv Bright-Yellow 2 cells transformed with chimeric constructs. Glucose (56 mm), sucrose (Suc; 58 mm), and the non-transported Suc isomer palatinose doubled the β-glucuronidase activity conferred by the VvHT1 promoter, whereas fructose did not affect it. These effects were the strongest with the 2.4-kb promoter, which contains all putative sugar-responsive elements (activating and repressing), but they were also significant with the 0.3-kb promoter, which contains only activating sugar boxes. The induction of VvHT1 expression by both Suc and palatinose was confirmed in the homologous grape berry cell culture. The data provide the first example of a putative sugar transporter, which is induced by both glucose and Suc in higher plants. Although induction ofVvHT1 expression by Suc does not require transport, the presence of glucosyl moiety is necessary for Suc sensing. These results provide new insights into sugar sensing and signaling in plants.


Plant Signaling & Behavior | 2011

Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress.

Marina Leterrier; Mounira Chaki; Morad Airaki; Raquel Valderrama; José M. Palma; Juan B. Barroso; Francisco J. Corpas

During the last decade, it was established that the class III alcohol dehydrogenase (ADH3) enzyme, also known as glutathione-dependent formaldehyde dehydrogenase (FALDH; EC 1.2.1.1), catalyzes the NADH-dependent reduction of S-nitrosoglutathione (GSNO) and therefore was also designated as GSNO reductase. This finding has opened new aspects in the metabolism of nitric oxide (NO) and NO-derived molecules where GSNO is a key component. In this article, current knowledge of the involvement and potential function of this enzyme during plant development and under biotic/abiotic stress is briefly reviewed.


Plant Signaling & Behavior | 2009

Protein tyrosine nitration A new challenge in plants

Francisco J. Corpas; Mounira Chaki; Marina Leterrier; Juan B. Barroso

Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO2) into a chemical compound. In biological systems, this process has been found in different molecules such as proteins, lipids, and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress.


Plant and Cell Physiology | 2011

Detection and Quantification of S-Nitrosoglutathione (GSNO) in Pepper (Capsicum annuum L.) Plant Organs by LC-ES/MS

Morad Airaki; Lourdes Sánchez-Moreno; Marina Leterrier; Juan B. Barroso; José M. Palma; Francisco J. Corpas

Glutathione (GSH) is one of the major, soluble, low molecular weight antioxidants, as well as the major non-protein thiol in plant cells. However, the relevance of this molecule could be even greater considering that it can react with nitric oxide (NO) to generate S-nitrosoglutathione (GSNO) which is considered to function as a mobile reservoir of NO bioactivity in plants. Although this NO-derived molecule has an increased physiological and phytopathological relevance in plants cells, its identification and quantification in plant tissues have not be reported so far. Using liquid chromatography-electrospray/mass spectrometry (LC-ES/MS), a method was set up to detect and quantify simultaneously GSNO as well reduced and oxidized glutathione (GSH and GSSG, respectively) in different pepper plant organs including roots, stems and leaves, and in Arabidopsis leaves. The analysis of NO and GSNO reductase (GSNOR) activity in these pepper organs showed that the content of GSNO was directly related to the content of NO in each organ and oppositely related to the GSNOR activity. This approach opens up new analytical possibilities to understand the relevance of GSNO in plant cells under physiological and stress conditions.

Collaboration


Dive into the Marina Leterrier's collaboration.

Top Co-Authors

Avatar

Francisco J. Corpas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José M. Palma

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis A. del Río

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Morad Airaki

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge