Marina López-Solà
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina López-Solà.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Ben J. Harrison; Jesús Pujol; Marina López-Solà; Rosa Hernández-Ribas; Joan Deus; Hector Ortiz; Carles Soriano-Mas; Murat Yücel; Christos Pantelis; Narcís Cardoner
The notion of a “default mode of brain function” has taken on certain relevance in human neuroimaging studies and in relation to a network of lateral parietal and midline cortical regions that show prominent activity fluctuations during passive imaging states, such as rest. In this study, we perform three fMRI experiments that demonstrate consistency and specialization in the default mode network. Correlated activity fluctuations of default mode network regions are identified during (i) eyes-closed spontaneous rest, (ii) activation by moral dilemma, and (iii) deactivation by Stroop task performance. Across these imaging states, striking uniformity is shown in the basic anatomy of the default mode network, but with both tasks clearly and differentially modulating this activity compared with spontaneous fluctuations of the network at rest. Against rest, moral dilemma is further shown to evoke regionally specific activity increases of hypothesized functional relevance. Mapping spontaneous and task-related brain activity will help to constrain the meaning of the default mode network. These findings are discussed in relation to recent debate on the topic of default modes of brain function.
PLOS ONE | 2009
Jesús Pujol; Marina López-Solà; Hector Ortiz; Joan C. Vilanova; Ben J. Harrison; Murat Yücel; Carles Soriano-Mas; Narcís Cardoner; Joan Deus
Background Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. Methodology/Principal Findings Twenty-seven women (mean age: 47.8 years) were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds) consistently exceeded the stimulus application (9 seconds) in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia) to 4 kg/cm2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm2), control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. Conclusions/Significance The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions.
Biological Psychiatry | 2011
Carles Soriano-Mas; Rosa Hernández-Ribas; Jesús Pujol; Mikel Urretavizcaya; Joan Deus; Ben J. Harrison; Hector Ortiz; Marina López-Solà; Josep M. Menchón; Narcís Cardoner
BACKGROUND Whole-brain imaging approaches may contribute to the characterization of neuroanatomic alterations in major depression, especially in clinically homogenous patient groups such as those with melancholic features. We assessed brain anatomic alterations, both cross-sectionally and longitudinally, in patients with melancholic depression using a whole-brain voxel-wise approach. METHODS Whole-brain magnetic resonance images were collected from a relatively aged sample of 70 consecutively recruited major depressive disorder inpatients with melancholic features and from a group of 40 healthy control subjects. All patients were clinically followed for at least 2 years, and a subset of 30 depressive patients and 20 control subjects were rescanned after a 7-year period. Imaging data were analyzed with voxel- and tensor-based morphometry techniques. RESULTS Melancholic patients showed gray matter reductions in the left insula and white matter increases in the upper brainstem tegmentum. Male patients showed gray matter decreases in the right thalamus, and periventricular white matter reductions were specifically observed in older patients. Volume decreases in the left insula, hippocampus, and lateral parietal cortex predicted a slower recovery after treatment initiation. In longitudinal assessment, white matter of the upper brainstem tegmentum showed a different temporal evolution between groups. Additionally, bilateral gray matter reductions in the insulae were associated with the number of relapses during follow-up. CONCLUSIONS Structural alterations were identified in regions potentially related to relevant aspects of melancholia pathophysiology. Longitudinal analyses indicated region-specific interactions of baseline alterations with age as well as a significant association of clinical severity with focal changes occurring over time.
PLOS ONE | 2011
Ben J. Harrison; Jesús Pujol; Oren Contreras-Rodríguez; Carles Soriano-Mas; Marina López-Solà; Joan Deus; Hector Ortiz; Laura Blanco-Hinojo; Pino Alonso; Rosa Hernández-Ribas; Narcís Cardoner; José M. Menchón
Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized ‘default-mode network’ (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes.
Pain | 2014
Jesús Pujol; Dídac Macià; Alba Garcia-Fontanals; Laura Blanco-Hinojo; Marina López-Solà; Susana Garcia-Blanco; Violant Poca-Dias; Ben J. Harrison; Oren Contreras-Rodríguez; Jordi Monfort; Ferrán García-Fructuoso; Joan Deus
Summary Clinical pain in fibromyalgia is associated with functional changes at different brain levels in a pattern suggesting a general weakening of sensory integration. ABSTRACT Fibromyalgia typically presents with spontaneous body pain with no apparent cause and is considered pathophysiologically to be a functional disorder of somatosensory processing. We have investigated potential associations between the degree of self‐reported clinical pain and resting‐state brain functional connectivity at different levels of putative somatosensory integration. Resting‐state functional magnetic resonance imaging was obtained in 40 women with fibromyalgia and 36 control subjects. A combination of functional connectivity‐based measurements were used to assess (1) the basic pain signal modulation system at the level of the periaqueductal gray (PAG); (2) the sensory cortex with an emphasis on the parietal operculum/secondary somatosensory cortex (SII); and (3) the connectivity of these regions with the self‐referential “default mode” network. Compared with control subjects, a reduction of functional connectivity was identified across the 3 levels of neural processing, each showing a significant and complementary correlation with the degree of clinical pain. Specifically, self‐reported pain in fibromyalgia patients correlated with (1) reduced connectivity between PAG and anterior insula; (2) reduced connectivity between SII and primary somatosensory, visual, and auditory cortices; and (3) increased connectivity between SII and the default mode network. The results confirm previous research demonstrating abnormal functional connectivity in fibromyalgia and show that alterations at different levels of sensory processing may contribute to account for clinical pain. Importantly, reduced functional connectivity extended beyond the somatosensory domain and implicated visual and auditory sensory modalities. Overall, this study suggests that a general weakening of sensory integration underlies clinical pain in fibromyalgia.
eLife | 2016
Anjali Krishnan; Choong-Wan Woo; Luke J. Chang; Luka Ruzic; Xiaosi Gu; Marina López-Solà; Philip L. Jackson; Jesús Pujol; Jin Fan; Tor D. Wager
Understanding how humans represent others’ pain is critical for understanding pro-social behavior. ‘Shared experience’ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others’ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others’ pain, and present new, more specific, brain targets for studying pain empathy. DOI: http://dx.doi.org/10.7554/eLife.15166.001
Biological Psychiatry | 2015
Oren Contreras-Rodríguez; Jesús Pujol; Iolanda Batalla; Ben J. Harrison; Carles Soriano-Mas; Joan Deus; Marina López-Solà; Dídac Macià; Vanessa Pera; Rosa Hernández-Ribas; Josep Pifarré; José M. Menchón; Narcís Cardoner
BACKGROUND Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. METHODS High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. RESULTS Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. CONCLUSIONS Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy.
Neuropsychopharmacology | 2010
Marina López-Solà; Jesús Pujol; Rosa Hernández-Ribas; Ben J. Harrison; Oren Contreras-Rodríguez; Carles Soriano-Mas; Joan Deus; Hector Ortiz; José M. Menchón; Julio Vallejo; Narcís Cardoner
Major depressive disorder (MDD) is characterized by a constellation of affective, cognitive, and somatic symptoms associated with functional abnormalities in relevant brain systems. Painful stimuli are primarily stressful and can trigger consistent responses in brain regions highly overlapping with the regions altered in MDD patients. Duloxetine has proven to be effective in treating both core emotional symptoms and somatic complaints in depression. This study aimed to assess the effects of duloxetine treatment on brain response to painful stimulation in MDD patients. A total of 13 patients and a reference group of 20 healthy subjects were assessed on three occasions (baseline, treatment week 1, and week 8) with functional magnetic resonance imaging (fMRI) during local application of painful heat stimulation. Treatment with duloxetine was associated with a significant reduction in brain responses to painful stimulation in MDD patients in regions generally showing abnormally enhanced activation at baseline. Clinical improvement was associated with pain-related activation reductions in the pregenual anterior cingulate cortex, right prefrontal cortex, and pons. Pontine changes were specifically related to clinical remission. Increased baseline activations in the right prefrontal cortex and reduced deactivations in the subgenual anterior cingulate cortex predicted treatment responders at week 8. This is the first fMRI study addressed to assess the effect of duloxetine in MDD. As a novel approach, the application of painful stimulation as a basic neural stressor proved to be effective in mapping brain response changes associated with antidepressant treatment and brain correlates of symptom improvement in regions of special relevance to MDD pathophysiology.
British Journal of Psychiatry | 2014
Esther Via; Narcís Cardoner; Jesús Pujol; Pino Alonso; Marina López-Solà; Eva Real; Oren Contreras-Rodríguez; Joan Deus; Cinto Segalàs; José M. Menchón; Carles Soriano-Mas; Ben J. Harrison
BACKGROUND Despite knowledge of amygdala involvement in fear and anxiety, its contribution to the pathophysiology of obsessive-compulsive disorder (OCD) remains controversial. In the context of neuroimaging studies, it seems likely that the heterogeneity of the disorder might have contributed to a lack of consistent findings. AIMS To assess the influence of OCD symptom dimensions on amygdala responses to a well-validated emotional face-matching paradigm. METHOD Cross-sectional functional magnetic resonance imaging (fMRI) study of 67 patients with OCD and 67 age-, gender- and education-level matched healthy controls. RESULTS The severity of aggression/checking and sexual/religious symptom dimensions were significantly associated with heightened amygdala activation in those with OCD when responding to fearful faces, whereas no such correlations were seen for other symptom dimensions. CONCLUSIONS Amygdala functional alterations in OCD appear to be specifically modulated by symptom dimensions whose origins may be more closely linked to putative amygdala-centric processes, such as abnormal fear processing.
Arthritis & Rheumatism | 2014
Marina López-Solà; Jesús Pujol; Tor D. Wager; Alba Garcia-Fontanals; Laura Blanco-Hinojo; Susana Garcia-Blanco; Violant Poca-Dias; Ben J. Harrison; Oren Contreras-Rodríguez; Jordi Monfort; Ferrán García-Fructuoso; Joan Deus
Fibromyalgia (FM) is a disorder characterized by chronic pain and enhanced responses to acute noxious events. However, the sensory systems affected in FM may extend beyond pain itself, as FM patients show reduced tolerance to non‐nociceptive sensory stimulation. Characterizing the neural substrates of multisensory hypersensitivity in FM may thus provide important clues about the underlying pathophysiology of the disorder. The aim of this study was to characterize brain responses to non‐nociceptive sensory stimulation in FM patients and their relationship to subjective sensory sensitivity and clinical pain severity.