Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Marcet-Houben is active.

Publication


Featured researches published by Marina Marcet-Houben.


Trends in Genetics | 2010

Acquisition of prokaryotic genes by fungal genomes

Marina Marcet-Houben; Toni Gabaldón

The relevance of horizontal gene transfer (HGT) in eukaryotes is a matter of debate. Recent analyses have shown clear examples in some species such as Candida parapsilosis, but broader surveys are lacking. To assess the impact of HGT in the fungal kingdom, we searched for prokaryotic-derived HGTs in 60 fully sequenced genomes. Using strict phylogenomic criteria, we detected 713 transferred genes. HGT affected most fungal clades, with particularly high rates in Pezizomycotina. Transferred genes included bacterial arsenite reductase, catalase, different racemases and peptidoglycan metabolism enzymes. Our results suggest an important role for HGT in fungal evolution.


Nucleic Acids Research | 2011

PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions

Jaime Huerta-Cepas; Salvador Capella-Gutiérrez; Leszek P. Pryszcz; Ivan Denisov; Diego Kormes; Marina Marcet-Houben; Toni Gabaldón

The growing availability of complete genomic sequences from diverse species has brought about the need to scale up phylogenomic analyses, including the reconstruction of large collections of phylogenetic trees. Here, we present the third version of PhylomeDB (http://phylomeDB.org), a public database for genome-wide collections of gene phylogenies (phylomes). Currently, PhylomeDB is the largest phylogenetic repository and hosts 17 phylomes, comprising 416 093 trees and 165 840 alignments. It is also a major source for phylogeny-based orthology and paralogy predictions, covering about 5 million proteins in 717 fully-sequenced genomes. For each protein-coding gene in a seed genome, the database provides original and processed alignments, phylogenetic trees derived from various methods and phylogeny-based predictions of orthology and paralogy relationships. The new version of phylomeDB has been extended with novel data access and visualization features, including the possibility of programmatic access. Available seed species include model organisms such as human, yeast, Escherichia coli or Arabidopsis thaliana, but also alternative model species such as the human pathogen Candida albicans, or the pea aphid Acyrtosiphon pisum. Finally, PhylomeDB is currently being used by several genome sequencing projects that couple the genome annotation process with the reconstruction of the corresponding phylome, a strategy that provides relevant evolutionary insights.


BMC Biology | 2012

Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi

Salvador Capella-Gutiérrez; Marina Marcet-Houben; Toni Gabaldón

BackgroundMicrosporidia is one of the taxa that have experienced the most dramatic taxonomic reclassifications. Once thought to be among the earliest diverging eukaryotes, the fungal nature of this group of intracellular pathogens is now widely accepted. However, the specific position of microsporidia within the fungal tree of life is still debated. Due to the presence of accelerated evolutionary rates, phylogenetic analyses involving microsporidia are prone to methodological artifacts, such as long-branch attraction, especially when taxon sampling is limited.ResultsHere we exploit the recent availability of six complete microsporidian genomes to re-assess the long-standing question of their phylogenetic position. We show that microsporidians have a similar low level of conservation of gene neighborhood with other groups of fungi when controlling for the confounding effects of recent segmental duplications. A combined analysis of thousands of gene trees supports a topology in which microsporidia is a sister group to all other sequenced fungi. Moreover, this topology received increased support when less informative trees were discarded. This position of microsporidia was also strongly supported based on the combined analysis of 53 concatenated genes, and was robust to filters controlling for rate heterogeneity, compositional bias, long branch attraction and heterotachy.ConclusionsAltogether, our data strongly support a scenario in which microsporidia is the earliest-diverging clade of sequenced fungi.


Nucleic Acids Research | 2014

PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome

Jaime Huerta-Cepas; Salvador Capella-Gutiérrez; Leszek P. Pryszcz; Marina Marcet-Houben; Toni Gabaldón

Phylogenetic trees representing the evolutionary relationships of homologous genes are the entry point for many evolutionary analyses. For instance, the use of a phylogenetic tree can aid in the inference of orthology and paralogy relationships, and in the detection of relevant evolutionary events such as gene family expansions and contractions, horizontal gene transfer, recombination or incomplete lineage sorting. Similarly, given the plurality of evolutionary histories among genes encoded in a given genome, there is a need for the combined analysis of genome-wide collections of phylogenetic trees (phylomes). Here, we introduce a new release of PhylomeDB (http://phylomedb.org), a public repository of phylomes. Currently, PhylomeDB hosts 120 public phylomes, comprising >1.5 million maximum likelihood trees and multiple sequence alignments. In the current release, phylogenetic trees are annotated with taxonomic, protein-domain arrangement, functional and evolutionary information. PhylomeDB is also a major source for phylogeny-based predictions of orthology and paralogy, covering >10 million proteins across 1059 sequenced species. Here we describe newly implemented PhylomeDB features, and discuss a benchmark of the orthology predictions provided by the database, the impact of proteome updates and the use of the phylome approach in the analysis of newly sequenced genomes and transcriptomes.


BMC Genomics | 2012

Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus

Marina Marcet-Houben; Ana-Rosa Ballester; Beatriz de la Fuente; Eleonora Harries; Jose F. Marcos; Luis González-Candelas; Toni Gabaldón

BackgroundPenicillium digitatum is a fungal necrotroph causing a common citrus postharvest disease known as green mold. In order to gain insight into the genetic bases of its virulence mechanisms and its high degree of host-specificity, the genomes of two P. digitatum strains that differ in their antifungal resistance traits have been sequenced and compared with those of 28 other Pezizomycotina.ResultsThe two sequenced genomes are highly similar, but important differences between them include the presence of a unique gene cluster in the resistant strain, and mutations previously shown to confer fungicide resistance. The two strains, which were isolated in Spain, and another isolated in China have identical mitochondrial genome sequences suggesting a recent worldwide expansion of the species. Comparison with the closely-related but non-phytopathogenic P. chrysogenum reveals a much smaller gene content in P. digitatum, consistent with a more specialized lifestyle. We show that large regions of the P. chrysogenum genome, including entire supercontigs, are absent from P. digitatum, and that this is the result of large gene family expansions rather than acquisition through horizontal gene transfer. Our analysis of the P. digitatum genome is indicative of heterothallic sexual reproduction and reveals the molecular basis for the inability of this species to assimilate nitrate or produce the metabolites patulin and penicillin. Finally, we identify the predicted secretome, which provides a first approximation to the protein repertoire used during invasive growth.ConclusionsThe complete genome of P. digitatum, the first of a phytopathogenic Penicillium species, is a valuable tool for understanding the virulence mechanisms and host-specificity of this economically important pest.


PLOS Biology | 2015

Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage.

Marina Marcet-Houben; Toni Gabaldón

Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.


BMC Genomics | 2013

Comparative genomics of emerging pathogens in the Candida glabrata clade

Toni Gabaldón; Tiphaine Martin; Marina Marcet-Houben; Pascal Durrens; Monique Bolotin-Fukuhara; Olivier Lespinet; Sylvie Arnaise; Stéphanie Boisnard; Gabriela Aguileta; Ralitsa Atanasova; Christiane Bouchier; Arnaud Couloux; Sophie Creno; José Almeida Cruz; Hugo Devillers; Adela Enache-Angoulvant; Juliette Guitard; Laure Jaouen; Laurence Ma; Christian Marck; Cécile Neuvéglise; Eric Pelletier; Amélie Pinard; Julie Poulain; Julien Recoquillay; Eric Westhof; Patrick Wincker; Bernard Dujon; Christophe Hennequin; Cécile Fairhead

BackgroundCandida glabrata follows C. albicans as the second or third most prevalent cause of candidemia worldwide. These two pathogenic yeasts are distantly related, C. glabrata being part of the Nakaseomyces, a group more closely related to Saccharomyces cerevisiae. Although C. glabrata was thought to be the only pathogenic Nakaseomyces, two new pathogens have recently been described within this group: C. nivariensis and C. bracarensis. To gain insight into the genomic changes underlying the emergence of virulence, we sequenced the genomes of these two, and three other non-pathogenic Nakaseomyces, and compared them to other sequenced yeasts.ResultsOur results indicate that the two new pathogens are more closely related to the non-pathogenic N. delphensis than to C. glabrata. We uncover duplications and accelerated evolution that specifically affected genes in the lineage preceding the group containing N. delphensis and the three pathogens, which may provide clues to the higher propensity of this group to infect humans. Finally, the number of Epa-like adhesins is specifically enriched in the pathogens, particularly in C. glabrata.ConclusionsRemarkably, some features thought to be the result of adaptation of C. glabrata to a pathogenic lifestyle, are present throughout the Nakaseomyces, indicating these are rather ancient adaptations to other environments. Phylogeny suggests that human pathogenesis evolved several times, independently within the clade. The expansion of the EPA gene family in pathogens establishes an evolutionary link between adhesion and virulence phenotypes. Our analyses thus shed light onto the relationships between virulence and the recent genomic changes that occurred within the Nakaseomyces.Sequence Accession NumbersNakaseomyces delphensis: CAPT01000001 to CAPT01000179Candida bracarensis: CAPU01000001 to CAPU01000251Candida nivariensis: CAPV01000001 to CAPV01000123Candida castellii: CAPW01000001 to CAPW01000101Nakaseomyces bacillisporus: CAPX01000001 to CAPX01000186


Molecular Plant-microbe Interactions | 2015

Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity

Ana-Rosa Ballester; Marina Marcet-Houben; Elena Levin; Noa Sela; Cristina Selma-Lázaro; Lourdes Carmona; Michael Wisniewski; Samir Droby; Luis González-Candelas; Toni Gabaldón

The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in their recently accepted paper.


PLOS ONE | 2009

The Tree versus the Forest: The Fungal Tree of Life and the Topological Diversity within the Yeast Phylome

Marina Marcet-Houben; Toni Gabaldón

A recurrent topic in phylogenomics is the combination of various sequence alignments to reconstruct a tree that describes the evolutionary relationships within a group of species. However, such approach has been criticized for not being able to properly represent the topological diversity found among gene trees. To evaluate the representativeness of species trees based on concatenated alignments, we reconstruct several fungal species trees and compare them with the complete collection of phylogenies of genes encoded in the Saccharomyces cerevisiae genome. We found that, despite high levels of among-gene topological variation, the species trees do represent widely supported phylogenetic relationships. Most topological discrepancies between gene and species trees are concentrated in certain conflicting nodes. We propose to map such information on the species tree so that it accounts for the levels of congruence across the genome. We identified the lack of sufficient accuracy of current alignment and phylogenetic methods as an important source for the topological diversity encountered among gene trees. Finally, we discuss the implications of the high levels of topological variation for phylogeny-based orthology prediction strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies

Solenn Patalano; Anna Vlasova; Chris Wyatt; Philip Ewels; Francisco Camara; Pedro Ferreira; Claire Asher; Tomasz P. Jurkowski; Anne Segonds-Pichon; Martin Bachman; Irene González-Navarrete; André E. Minoche; Felix Krueger; Ernesto Lowy; Marina Marcet-Houben; Jose Luis Rodriguez-Ales; Fabio S. Nascimento; Shankar Balasubramanian; Toni Gabaldón; James E. Tarver; Simon Andrews; Heinz Himmelbauer; William O. H. Hughes; Roderic Guigó; Wolf Reik; Seirian Sumner

Significance In eusocial insect societies, such as ants and some bees and wasps, phenotypes are highly plastic, generating alternative phenotypes (queens and workers) from the same genome. The greatest plasticity is found in simple insect societies, in which individuals can switch between phenotypes as adults. The genomic, transcriptional, and epigenetic underpinnings of such plasticity are largely unknown. In contrast to the complex societies of the honeybee, we find that simple insect societies lack distinct transcriptional differentiation between phenotypes and coherently patterned DNA methylomes. Instead, alternative phenotypes are largely defined by subtle transcriptional network organization. These traits may facilitate genomic plasticity. These insights and resources will stimulate new approaches and hypotheses that will help to unravel the genomic processes that create phenotypic plasticity. Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.

Collaboration


Dive into the Marina Marcet-Houben's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Wincker

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ana-Rosa Ballester

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Irene Julca

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Luis González-Candelas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anna Vlasova

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Pablo Vargas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Píndaro Díaz-Jaimes

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge