Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Mikhaylova is active.

Publication


Featured researches published by Marina Mikhaylova.


Neuron | 2013

TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites.

Myrrhe van Spronsen; Marina Mikhaylova; Joanna Lipka; Max A. Schlager; Dave J. van den Heuvel; Marijn Kuijpers; Phebe S. Wulf; Nanda Keijzer; Jeroen Demmers; Lukas C. Kapitein; Dick Jaarsma; Hans C. Gerritsen; Anna Akhmanova; Casper C. Hoogenraad

In neurons, the distinct molecular composition of axons and dendrites is established through polarized targeting mechanisms, but it is currently unclear how nonpolarized cargoes, such as mitochondria, become uniformly distributed over these specialized neuronal compartments. Here, we show that TRAK family adaptor proteins, TRAK1 and TRAK2, which link mitochondria to microtubule-based motors, are required for axonal and dendritic mitochondrial motility and utilize different transport machineries to steer mitochondria into axons and dendrites. TRAK1 binds to both kinesin-1 and dynein/dynactin, is prominently localized in axons, and is needed for normal axon outgrowth, whereas TRAK2 predominantly interacts with dynein/dynactin, is more abundantly present in dendrites, and is required for dendritic development. These functional differences follow from their distinct conformations: TRAK2 preferentially adopts a head-to-tail interaction, which interferes with kinesin-1 binding and axonal transport. Our study demonstrates how the molecular interplay between bidirectional adaptor proteins and distinct microtubule-based motors drives polarized mitochondrial transport.


Neurobiology of Aging | 2011

Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors.

Raik Rönicke; Marina Mikhaylova; Sabine Rönicke; Jessica Meinhardt; Ulrich H. Schröder; Marcus Fändrich; Georg Reiser; Michael R. Kreutz; Klaus G. Reymann

Several studies indicate that NMDA receptor signaling is involved in Aβ oligomer-mediated impairment of neuronal function and morphology. Utilizing primary neuronal cell culture and hippocampal slices from rat and mouse, we found that Aβ oligomer administration readily impairs long-term potentiation, reduces baseline synaptic transmission, decreases neuronal spontaneous network activity and induces retraction of synaptic contacts long before major cytotoxic effects are visible. Interestingly, all these effects can be blocked with the NR2B-containing NMDA-receptor antagonist ifenprodil or Ro 25-6981 suggesting that activation of downstream effectors of these receptors is involved in early detrimental actions of Aβ oligomers. In line we found that Jacob, a messenger that can couple extrasynaptic NMDA-receptor activity to CREB dephosphorylation, accumulates in the nucleus after Aβ oligomer administration and that the nuclear accumulation of Jacob can be blocked by a simultaneous application of ifenprodil. We conclude that Aβ oligomers induce early neuronal dysfunction mainly by activation of NR2B-containing NMDA-receptors.


The Journal of Neuroscience | 2006

Involvement of Protein Synthesis and Degradation in Long-Term Potentiation of Schaffer Collateral CA1 Synapses

Anna Karpova; Marina Mikhaylova; Ulrich Thomas; Thomas Knöpfel; Thomas Behnisch

Expression of synaptic plasticity involves the translation of mRNA into protein and, probably, active protein degradation via the proteasome pathway. Here, we report on the rapid activation of synthesis and degradation of a probe protein with the induction of long-term potentiation (LTP) in the hippocampal Schaffer collateral CA1 pathway. The proteasome inhibitor MG132 significantly reduced the field EPSP slope potentiation and LTP maintenance without acutely affecting basal synaptic transmission. To visualize protein dynamics, CA1 pyramidal cells of hippocampal slices were transfected with Semliki Forest virus particles expressing a recombinant RNA. This RNA contained the coding sequence for a degradable green fluorescence protein with a nuclear localization signal (NLS-d1EGFP) followed by a 3′- untranslated region dendritic targeting sequence. NLS-d1EGFP fluorescence remained stable in the low-frequency test stimulation but increased with LTP induction in the cell body and in most dendritic compartments of CA1 neurons. Applying anisomycin, a protein synthesis inhibitor, caused NLS-d1EGFP levels to decline; a proteasome inhibitor MG132 reversed this effect. In the presence of anisomycin, LTP induction accelerated the degradation of NLS-d1EGFP. When both inhibitors were present, NLS-d1EGFP levels remained unaffected by LTP induction. Moreover, LTP-induced acceleration of NLS-d1EGFP synthesis was blocked by rapamycin, which is consistent with the involvement of dendritic mammalian target of rapamycin in LTP-triggered translational activity. Our results clearly demonstrate that LTP induction not only leads to a rapid increase in the rate of protein synthesis but also accelerates protein degradation via the proteasome system.


PLOS Biology | 2008

Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus.

Daniela C. Dieterich; Anna Karpova; Marina Mikhaylova; Irina Zdobnova; Imbritt König; Marco Landwehr; Martin Kreutz; Karl-Heinz Smalla; Karin Richter; Peter Landgraf; Carsten Reissner; Tobias M. Boeckers; Werner Zuschratter; Christina Spilker; Constanze I. Seidenbecher; Craig C. Garner; Eckart D. Gundelfinger; Michael R. Kreutz

NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacobs nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacobs nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacobs extranuclear localization by competing with the binding of Importin-α to Jacobs nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration.


Cell | 2013

Encoding and Transducing the Synaptic or Extrasynaptic Origin of NMDA Receptor Signals to the Nucleus

Anna Karpova; Marina Mikhaylova; Sujoy Bera; Julia Bär; Pasham Parameshwar Reddy; Thomas Behnisch; Vladan Rankovic; Christina Spilker; Philipp Bethge; Jale Sahin; Rahul Kaushik; Werner Zuschratter; Thilo Kähne; Michael Naumann; Eckart D. Gundelfinger; Michael R. Kreutz

The activation of N-methyl-D-aspartate-receptors (NMDARs) in synapses provides plasticity and cell survival signals, whereas NMDARs residing in the neuronal membrane outside synapses trigger neurodegeneration. At present, it is unclear how these opposing signals are transduced to and discriminated by the nucleus. In this study, we demonstrate that Jacob is a protein messenger that encodes the origin of synaptic versus extrasynaptic NMDAR signals and delivers them to the nucleus. Exclusively synaptic, but not extrasynaptic, NMDAR activation induces phosphorylation of Jacob at serine-180 by ERK1/2. Long-distance trafficking of Jacob from synaptic, but not extrasynaptic, sites depends on ERK activity, and association with fragments of the intermediate filament α-internexin hinders dephosphorylation of the Jacob/ERK complex during nuclear transit. In the nucleus, the phosphorylation state of Jacob determines whether it induces cell death or promotes cell survival and enhances synaptic plasticity.


Neuron | 2014

Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development

Kah Wai Yau; Sam F.B. van Beuningen; Inês Cunha-Ferreira; Bas M. C. Cloin; Eljo Y. van Battum; Lena Will; Philipp Schätzle; Roderick P. Tas; Jaap van Krugten; Eugene A. Katrukha; Kai Jiang; Phebe S. Wulf; Marina Mikhaylova; Martin Harterink; R. Jeroen Pasterkamp; Anna Akhmanova; Lukas C. Kapitein; Casper C. Hoogenraad

In neurons, most microtubules are not associated with a central microtubule-organizing center (MTOC), and therefore, both the minus and plus-ends of these non-centrosomal microtubules are found throughout the cell. Microtubule plus-ends are well established as dynamic regulatory sites in numerous processes, but the role of microtubule minus-ends has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and laser-based microsurgery techniques, we show that the CAMSAP/Nezha/Patronin family protein CAMSAP2 specifically localizes to non-centrosomal microtubule minus-ends and is required for proper microtubule organization in neurons. CAMSAP2 stabilizes non-centrosomal microtubules and is required for neuronal polarity, axon specification, and dendritic branch formation in vitro and in vivo. Furthermore, we found that non-centrosomal microtubules in dendrites are largely generated by γ-Tubulin-dependent nucleation. We propose a two-step model in which γ-Tubulin initiates the formation of non-centrosomal microtubules and CAMSAP2 stabilizes the free microtubule minus-ends in order to control neuronal polarity and development.


Nature Communications | 2015

Resolving bundled microtubules using anti-tubulin nanobodies

Marina Mikhaylova; Bas M. C. Cloin; Kieran Finan; Robert van den Berg; Jalmar Teeuw; Marta M. Kijanka; Mikolaj Sokolowski; Eugene A. Katrukha; Manuel Maidorn; Felipe Opazo; Sandrine Moutel; Marylin Vantard; Frank Perez; Paul M.P. van Bergen en Henegouwen; Casper C. Hoogenraad; Helge Ewers; Lukas C. Kapitein

Microtubules are hollow biopolymers of 25-nm diameter and are key constituents of the cytoskeleton. In neurons, microtubules are organized differently between axons and dendrites, but their precise organization in different compartments is not completely understood. Super-resolution microscopy techniques can detect specific structures at an increased resolution, but the narrow spacing between neuronal microtubules poses challenges because most existing labelling strategies increase the effective microtubule diameter by 20–40 nm and will thereby blend neighbouring microtubules into one structure. Here we develop single-chain antibody fragments (nanobodies) against tubulin to achieve super-resolution imaging of microtubules with a decreased apparent diameter. To test the resolving power of these novel probes, we generate microtubule bundles with a known spacing of 50–70 nm and successfully resolve individual microtubules. Individual bundled microtubules can also be resolved in different mammalian cells, including hippocampal neurons, allowing novel insights into fundamental mechanisms of microtubule organization in cell- and neurobiology.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Calneurons provide a calcium threshold for trans-Golgi network to plasma membrane trafficking

Marina Mikhaylova; Pasham Parameshwar Reddy; Thomas Munsch; Peter Landgraf; Shashi Kumar Suman; Karl-Heinz Smalla; Eckart D. Gundelfinger; Yogendra Sharma; Michael R. Kreutz

Phosphatidylinositol 4-OH kinase IIIβ (PI-4Kβ) is involved in the regulated local synthesis of phospholipids that are crucial for trans-Golgi network (TGN)-to-plasma membrane trafficking. In this study, we show that the calcium sensor proteins calneuron-1 and calneuron-2 physically associate with PI-4Kβ, inhibit the enzyme profoundly at resting and low calcium levels, and negatively interfere with Golgi-to-plasma membrane trafficking. At high calcium levels this inhibition is released and PI-4Kβ is activated via a preferential association with neuronal calcium sensor-1 (NCS-1). In accord to its supposed function as a filter for subthreshold Golgi calcium transients, neuronal overexpression of calneuron-1 enlarges the size of the TGN caused by a build-up of vesicle proteins and reduces the number of axonal Piccolo-Bassoon transport vesicles, large dense core vesicles that carry a set of essential proteins for the formation of the presynaptic active zone during development. A corresponding protein knockdown has the opposite effect. The opposing roles of calneurons and NCS-1 provide a molecular switch to decode local calcium transients at the Golgi and impose a calcium threshold for PI-4Kβ activity and vesicle trafficking.


Journal of Neurochemistry | 2011

Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling

Marina Mikhaylova; Johannes Hradsky; Michael R. Kreutz

J. Neurochem. (2011) 118, 695–713.


PLOS ONE | 2011

Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression

Thomas Behnisch; Pingan Yuanxiang; Philipp Bethge; Suhel Parvez; Ying Chen; Jin Yu; Anna Karpova; Julietta U. Frey; Marina Mikhaylova; Michael R. Kreutz

BACKGROUND In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS We have analyzed the dynamics of Jacobs nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD in hippocampal primary neurons. However, in accordance with previous studies, high concentrations of NMDA and glycine as well as specific activation of extrasynaptic NMDA-receptors resembling pathological conditions induce an even more profound increase of nuclear Jacob levels. CONCLUSIONS/SIGNIFICANCE Taken together, these findings suggest that the two major forms of NMDA-receptor dependent synaptic plasticity, LTP and LTD, elicit the transition of different synapto-nuclear messengers albeit in both cases importin-mediated retrograde transport and NMDA-receptor activation is required.

Collaboration


Dive into the Marina Mikhaylova's collaboration.

Top Co-Authors

Avatar

Michael R. Kreutz

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Anna Karpova

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Johannes Hradsky

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Pasham Parameshwar Reddy

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Spilker

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eckart D. Gundelfinger

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Julia Bär

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Yogendra Sharma

Centre for Cellular and Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge