Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Mione is active.

Publication


Featured researches published by Marina Mione.


The Journal of Neuroscience | 1997

Apoptosis and Its Relation to the Cell Cycle in the Developing Cerebral Cortex

Dimitra Thomaidou; Marina Mione; John F. R. Cavanagh; John G. Parnavelas

Large numbers of dying cells are found in proliferating tissues, suggesting a link between cell death and cell division. We detected and quantified dying cells during pre- and early postnatal development of the rat cerebral cortex using in situ end labeling of DNA fragmentation [terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)] and electron microscopy. The proliferative zones that give rise to the neuronal and glial cell types of the cortex, the ventricular and, to a larger extent, the subventricular zones showed higher incidence of cell death than other regions of the developing cortex during the period of neurogenesis. Gel electrophoresis of DNA isolated from the subventricular zone of newborn animals showed a ladder pattern that is characteristic of apoptosis. The number of apoptotic cells remained high in this zone for at least 2 weeks, during which period cells continued to divide. The correlation between cell division and cell death was studied in the subventricular zone of newborn rats; cumulative labeling with bromodeoxyuridine showed that 71% of TUNEL-labeled cells had taken up this S-phase marker before undergoing cell death. Using bromodeoxyuridine and [3H]-thymidine in succession to identify a cohort of proliferating cells, we found that the clearance time of TUNEL-positive nuclei was 2 hr and 20 min. A comparison between the number of mitotic figures and that of TUNEL-positive nuclei showed that cell death affects one in every 14 cells produced by dividing ventricular zone cells at embryonic day 16 and one in every 1.5 cells produced in the subventricular zone of newborn rats. In addition, we found that most of TUNEL-positive cells were in the G1 phase of their cell cycle. We conclude that apoptosis is prominent in the proliferating neuroepithelium of the developing rat cerebral cortex and that it is related to the progression of the cell cycle.


The Journal of Neuroscience | 2005

Early development of functional spatial maps in the zebrafish olfactory bulb.

Jun Li; Julia Angela Mack-Bucher; Marcel Souren; Emre Yaksi; Shin-ichi Higashijima; Marina Mione; Joseph R. Fetcho; Rainer W. Friedrich

In the adult olfactory bulb (OB), particular chemical classes of odorants preferentially activate glomeruli within loosely defined regions, resulting in a coarse and fractured “chemotopic” map. In zebrafish, amino acids and bile acids predominantly stimulate glomeruli in the lateral and medial OB, respectively. We studied the development of these spatial response maps in zebrafish. At 3 d postfertilization (dpf), the OB contained protoglomerular structures that became refined and more numerous during subsequent days. In a transgenic zebrafish line expressing the Ca2+ indicator protein inverse pericam, mainly in mitral cells, odor responses in the OB were first detected at 2.5-3 dpf. Already at this stage, amino acids and bile acids evoked activity predominantly in the lateral and medial OB, respectively. Two-photon Ca2+ imaging using a synthetic indicator was used to reconstruct activity patterns at higher resolution in three dimensions. Responses to amino acids and bile acids were detected predominantly in the lateral and medial OB, respectively, with little overlap. Between 2.5 and 6 dpf, the number of odor-responsive units increased, but the overall spatial organization of activity persisted. Hence, a coarse spatial organization of functional activity maps is established very early during OB development when glomeruli are not yet differentiated. This spatial organization is maintained during development and growth of neuronal circuits and may have important functions for odor processing in larvae, for the differentiation of glomeruli, and for the refinement of activity maps at later developmental stages.


American Journal of Human Genetics | 2006

Mutation in Rab3 GTPase-Activating Protein (RAB3GAP) Noncatalytic Subunit in a Kindred with Martsolf Syndrome

Irene A. Aligianis; Neil V. Morgan; Marina Mione; Colin A. Johnson; Elisabeth Rosser; Raoul C. M. Hennekam; Gill Adams; R. C. Trembath; Daniela T. Pilz; Neil Stoodley; Anthony T. Moore; Steve W. Wilson; Eamonn R. Maher

We identified a homozygous missense mutation in the noncatalytic subunit (RAB3GAP2) of RAB3GAP that results in abnormal splicing in a family with congenital cataracts, hypogonadism, and mild mental retardation (Martsolf syndrome). Recently, mutations in the catalytic subunit of RAB3GAP (RAB3GAP1), a key regulator of calcium-mediated hormone and neurotransmitter exocytosis, were reported in Warburg micro syndrome, a severe neurodevelopmental condition with overlapping clinical features. RAB3GAP is a heterodimeric protein that consists of a catalytic subunit and a noncatalytic subunit encoded by RAB3GAP1 and RAB3GAP2, respectively. We performed messenger RNA-expression studies of RAB3GAP1 and RAB3GAP2 orthologues in Danio rerio embryos and demonstrated that, whereas developmental expression of rab3gap1 was generalized (similar to that reported elsewhere in mice), rab3gap2 expression was restricted to the central nervous system. These findings are consistent with RAB3GAP2 having a key role in neurodevelopment and may indicate that Warburg micro and Martsolf syndromes represent a spectrum of disorders. However, we did not detect RAB3GAP2 mutations in patients with Warburg micro syndrome. These findings suggest that RAB3GAP dysregulation may result in a spectrum of phenotypes that range from Warburg micro syndrome to Martsolf syndrome.


The Journal of Comparative Neurology | 2002

Conserved and divergent patterns of reelin expression in the zebrafish central nervous system

Arianna Costagli; Marika Kapsimali; Stephen W. Wilson; Marina Mione

The protein Reelin is suggested to function in cell–cell interactions and in mediating neuronal migrations in layered central nervous system structures. With the aim of shedding light on the development of the teleost telencephalon, which forms through the process of eversion and results in the formation of a nonlaminar pallium, we isolated a zebrafish ortholog of the reelin gene and studied its expression in developing and adult brain. The pattern of expression is highly dynamic during the first 24–72 hours of development. By 5 days postfertilization, high amounts of reelin mRNA are found in the dorsal telencephalon, thalamic and hypothalamic regions, pretectal nuclei, optic tectum, cerebellum, hindbrain, reticular formation, and spinal cord, primarily confined to postmitotic neurons. This pattern persists in 1‐ to 3‐month‐old zebrafish. This study, together with reports on reelin expression in other vertebrates, shows that reelin mRNA distribution is conserved in many regions of the vertebrate brain. A major exception is that reelin is expressed in the majority of the cells of the dorsal regions of the everted telencephalon in zebrafish embryos, whereas it is restricted to specific neuronal populations in the developing telencephalon of amniotes. To better understand the origin of these differences, we analyzed reelin expression in the telencephalon of an amphibian. Telencephalic reelin expression in Xenopus laevis shows more similarities with the sauropsidian than with the teleostean pattern. Thus, the differences in the telencephalic expression of reelin between teleosts and tetrapods are likely to be due to different roles for Reelin during eversion, a process that is specific for the teleost telencephalon. J. Comp. Neurol. 450:73–93, 2002.


Mechanisms of Development | 2001

Overlapping expression of zebrafish T-brain-1 and eomesodermin during forebrain development

Marina Mione; Shantha Shanmugalingam; David Kimelman; Kevin J. P. Griffin

T-box transcription factors are important determinants of embryonic cell fate and behaviour. Two T-box genes are expressed in the developing telencephalon of several vertebrate species, including amphibia, birds and mammals. Here we report the cloning of zebrafish T-brain-1 (tbr1) and eomesodermin (eom). As a prelude to genetic studies of neuro-ectodermal fate determination we studied their expression pattern during embryogenesis and early larval development. Eom is expressed in the presumptive telencephalon from around the 4-5 somite stage in bilaterally symmetric groups of cells; the number of positive cells increases dramatically with time and encompasses the entire dorsal telencephalon by the 22 somite stage. Tbr1 is expressed from the 18 somite stage in a subset of eom-expressing cells. By 24 hpf eom and tbr1 are expressed in largely overlapping domains in the dorsal telencephalon, tbr1 is expressed in postmitotic cells whereas eomes is also expressed in proliferative ventricular zone cells. Both genes are also found in a small domain of the diencephalon bordering the telencephalon. A detailed analysis of the expression of tbr1 and eom in the brain of 4 day old larvae shows that the two T-box genes are differentially expressed in various cell populations of the developing brain.


Developmental Biology | 2012

Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A

Susan Du; Bruce W. Draper; Marina Mione; Cecilia B. Moens; Ashley E.E. Bruce

The T-box transcription factor Eomesodermin (Eomes) has been implicated in patterning and morphogenesis in frog, fish and mouse. In zebrafish, one of the two Eomes homologs, Eomesa, has been implicated in dorsal-ventral patterning, epiboly and endoderm specification in experiments employing over-expression, dominant-negative constructs and antisense morpholino oligonucleotides. Here we report for the first time the identification and characterization of an Eomesa mutant generated by TILLING. We find that Eomesa has a strictly maternal role in the initiation of epiboly, which involves doming of the yolk cell up into the overlying blastoderm. By contrast, epiboly progression is normal, demonstrating for the first time that epiboly initiation is genetically separable from progression. The yolk cell microtubules, which are required for epiboly, are defective in maternal-zygotic eomesa mutant embryos. In addition, the deep cells of the blastoderm are more tightly packed and exhibit more bleb-like protrusions than cells in control embryos. We postulate that the doming delay may be the consequence both of overly stabilized yolk cell microtubules and defects in the adhesive properties or motility of deep cells. We also show that Eomesa is required for normal expression of the endoderm markers sox32, bon and og9x; however it is not essential for endoderm formation.


Development Genes and Evolution | 2006

Identification of alternatively spliced dab1 isoforms in zebrafish

Arianna Costagli; Barbara Felice; Alessandro Guffanti; Stephen W. Wilson; Marina Mione

We have investigated the genomic organization, the occurrence of alternative splicing and the differential expression of the zebrafish disabled1 (dab1) gene. Dab1 is a key effector of the Reelin pathway, which regulates neuronal migration during brain development in vertebrates. The coding region of the zebrafish dab1 gene spans over 600xa0kb of genomic DNA and is composed of 15 exons. Alternative splicing in a region enriched for tyrosine residues generates at least three different isoforms. These isoforms are developmentally regulated and show differential tissue expression. Comparison with mouse and human data shows an overall conservation of the genomic organization with different alternative splicing events generating species-specific isoforms. Because these alternative splicing events give rise to isoforms with different numbers of phosphorylateable tyrosines, we speculate that alternative splicing of the dab1 gene in zebrafish and in other vertebrates regulates the nature of the cellular response to the Reelin signal.


Developmental Biology | 2008

Neuronal function of Tbx20 conserved from nematodes to vertebrates.

Roger Pocock; Marina Mione; Sagair Hussain; Sara Maxwell; Marco Pontecorvi; Sobia Aslam; Dianne Gerrelli; Jane C. Sowden; Alison Woollard

The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.


The Journal of Comparative Neurology | 2006

Expression of pcp4a in subpopulations of CNS neurons in zebrafish

Marina Mione; Zsolt Lele; Camilla T. Kwong; Miguel L. Concha; Jonathan D. W. Clarke

The molecular organization of the zebrafish brain and its relation to neuroanatomical divisions are still largely unknown. In this study we have analyzed the expression of a small transcript encoding for the IQ containing polypeptide Pcp4a in developing and juvenile zebrafish. The transcript is exclusively expressed in neural structures with a pattern that is highly specific for restricted domains and cell populations throughout development, and it allows us to follow the development of these structures at different times. The expression of pcp4a characterizes the dorsocaudal telencephalon, dorsal habenula, pretectal nuclei, preglomerular complex, mammillary bodies, and deep layers of the optic tectum and is a hallmark of a subpopulation of reticulospinal neurons. In the telencephalon, comparison of the expression of pcp4a with other pallial markers showed a rostrocaudal gradient in the expression of these genes, which suggests that the dorsal telencephalon of zebrafish may be organized in distinct areas with different molecular natures. Pcp4 has been involved in modulating calcium signals and in binding to calmodulin, but its precise role in neuronal functions is not known. The analysis of pcp4a expression and localization in the zebrafish brain suggests that pcp4a may be a useful marker for sensory and some motor neuronal circuitries and for telencephalic areas processing sensory inputs. J. Comp. Neurol. 495:769–787, 2006.


The Journal of Neuroscience | 2001

Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene and Decreased Calcium Channel Current in Cerebellar Purkinje Cells

Jane Barclay; Nuria Balaguero; Marina Mione; Susan L. Ackerman; Verity A. Letts; Jens Brodbeck; Carles Cantí; Alon Meir; Karen M. Page; Kenro Kusumi; Edward Perez-Reyes; Eric S. Lander; Wayne N. Frankel; R. Mark Gardiner; Annette C. Dolphin; Michele Rees

Collaboration


Dive into the Marina Mione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carles Cantí

University College London

View shared research outputs
Top Co-Authors

Avatar

Jane Barclay

University College London

View shared research outputs
Top Co-Authors

Avatar

Jens Brodbeck

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Rees

University College London

View shared research outputs
Top Co-Authors

Avatar

Nuria Balaguero

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge