Marina R. Carpinelli
Walter and Eliza Hall Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina R. Carpinelli.
Cell | 2007
Kylie D. Mason; Marina R. Carpinelli; Jamie I. Fletcher; Janelle E. Collinge; Adrienne A. Hilton; Sarah Ellis; Priscilla N. Kelly; Paul G. Ekert; Donald Metcalf; Andrew W. Roberts; David C. S. Huang; Benjamin T. Kile
Platelets are anuclear cytoplasmic fragments essential for blood clotting and wound healing. Despite much speculation, the factors determining their life span in the circulation are unknown. We show here that an intrinsic program for apoptosis controls platelet survival and dictates their life span. Pro-survival Bcl-x(L) constrains the pro-apoptotic activity of Bak to maintain platelet survival, but as Bcl-x(L) degrades, aged platelets are primed for cell death. Genetic ablation or pharmacological inactivation of Bcl-x(L) reduces platelet half-life and causes thrombocytopenia in a dose-dependent manner. Deletion of Bak corrects these defects, and platelets from Bak-deficient mice live longer than normal. Thus, platelets are, by default, genetically programmed to die by apoptosis. The antagonistic balance between Bcl-x(L) and Bak constitutes a molecular clock that determines platelet life span: this represents an important paradigm for cellular homeostasis, and has profound implications for the diagnosis and treatment of disorders that affect platelet number and function.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Jordane Malaterre; Marina R. Carpinelli; Matthias Ernst; Warren S. Alexander; Michael P. Cooke; Susan Sutton; Sebastian Dworkin; Joan K. Heath; Jon Frampton; Grant A. McArthur; Hans Clevers; Douglas J. Hilton; Theo Mantamadiotis; Robert G. Ramsay
The colonic crypt is the functional unit of the colon mucosa with a central role in ion and water reabsorption. Under steady-state conditions, the distal colonic crypt harbors a single stem cell at its base that gives rise to highly proliferative progenitor cells that differentiate into columnar, goblet, and endocrine cells. The role of c-Myb in crypt homeostasis has not been elucidated. Here we have studied three genetically distinct hypomorphic c-myb mutant mouse strains, all of which show reduced colonic crypt size. The mutations target the key domains of the transcription factor: the DNA binding, transactivation, and negative regulatory domains. In vivo proliferation and cell cycle marker studies suggest that these mice have a progenitor cell proliferation defect mediated in part by reduced Cyclin E1 expression. To independently assess the extent to which c-myb is required for colonic crypt homeostasis we also generated a novel tissue-specific mouse model to allow the deletion of c-myb in adult colon, and using these mice we show that c-Myb is required for crypt integrity, normal differentiation, and steady-state proliferation.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Warren S. Alexander; Elizabeth M. Viney; Jian-Guo Zhang; Donald Metcalf; Maria Kauppi; Craig D. Hyland; Marina R. Carpinelli; William Stevenson; Ben A. Croker; Adrienne A. Hilton; Sarah Ellis; Carly Selan; Harshal Nandurkar; Christopher C. Goodnow; Benjamin T. Kile; Nicos A. Nicola; Andrew W. Roberts; Douglas J. Hilton
An N-ethyl-N-nitrosourea mutagenesis screen in mice was performed to isolate regulators of circulating platelet number. We report here recessive thrombocytopenia and kidney disease in plt1 mice, which is the result of a severe but partial loss-of-function mutation in the gene encoding glycoprotein-N-acetylgalactosamine-3-β-galactosyltransferase (C1GalT1), an enzyme essential for the synthesis of extended mucin-type O-glycans. Platelet half-life and basic hemostatic parameters were unaffected in plt1/plt1 mice, and the thrombocytopenia and kidney disease were not attenuated on a lymphocyte-deficient rag1-null background. gpIbα and podocalyxin were found to be major underglycosylated proteins in plt1/plt1 platelets and the kidney, respectively, implying that these are key targets for C1GalT1, appropriate glycosylation of which is essential for platelet production and kidney function. Compromised C1GalT1 activity has been associated with immune-mediated diseases in humans, most notably Tn syndrome and IgA nephropathy. The disease in plt1/plt1 mice suggests that, in addition to immune-mediated effects, intrinsic C1Gal-T1 deficiency in megakaryocytes and the kidney may contribute to pathology.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Carolyn A. de Graaf; Maria Kauppi; Tracey M. Baldwin; Craig D. Hyland; Donald Metcalf; Tracy A. Willson; Marina R. Carpinelli; Gordon K. Smyth; Warren S. Alexander; Douglas J. Hilton
Thrombopoietin (TPO), acting through its receptor Mpl, has two major physiological roles: ensuring production of sufficient platelets via stimulation of megakaryocyte production and maintaining hematopoietic stem cell (HSC) quiescence. Mpl also controls circulating TPO concentration via receptor-mediated internalization and degradation. Here, we demonstrate that the megakaryocytosis and increased platelet mass in mice with mutations in the Myb or p300 genes causes reduced circulating TPO concentration and TPO starvation of the stem-cell compartment, which is exacerbated because these cells additionally exhibit impaired responsiveness to TPO. HSCs from MybPlt4/Plt4 mice show altered expression of TPO-responsive genes and, like HSCs from Tpo and Mpl mutant mice, exhibit increased cycling and a decline in the number of HSCs with age. These studies suggest that disorders of platelet number can have profound effects on the HSC compartment via effects on the feedback regulation of circulating TPO concentration.
Blood | 2010
Kylie T. Greig; Carolyn A. de Graaf; James M. Murphy; Marina R. Carpinelli; Swee Heng Milon Pang; Jon Frampton; Benjamin T. Kile; Douglas J. Hilton; Stephen L. Nutt
c-Myb is a transcription factor with functions in many hematopoietic lineages. c-Myb-deficient mice display reduced numbers of B cells; however, it is unknown what role c-Myb plays in B lymphopoiesis because no critical target genes have been identified in the B-cell lineage. We demonstrate that conditional deletion of c-Myb in B-cell progenitors completely abolishes B-cell development. c-Myb is required for lymphoid progenitors to respond to the cytokines interleukin-7 and thymic stromal lymphopoietin; in the absence of sufficient c-Myb activity, mice display a B lymphopenia that closely resembles that observed in interleukin-7 receptor alpha-deficient animals. Analysis of the multipotent progenitor compartment indicates that c-Myb is also required for up-regulation of multiple lymphoid-associated genes, including Il7r, and for the subsequent development of the common lymphoid progenitor population. These data show that c-Myb plays a critical role in the regulatory pathways governing lymphoid specification and early B-cell differentiation.
American Journal of Pathology | 2002
Marina R. Carpinelli; Ian P. Wicks; Natalie A. Sims; Kristy O'Donnell; Katherine Hanzinikolas; Rachel A. Burt; Simon J. Foote; Melanie Bahlo; Warren S. Alexander; Douglas J. Hilton
We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G(1)) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Ian Majewski; Donald Metcalf; Lisa A. Mielke; Danielle L. Krebs; Sarah Ellis; Marina R. Carpinelli; Sandra Mifsud; Ladina Di Rago; Jason Corbin; Nicos A. Nicola; Douglas J. Hilton; Warren S. Alexander
We have generated mice from a N-ethyl-N-nitrosourea mutagenesis screen that carry a mutation in the translation initiation codon of Gata-1, termed Plt13, which is equivalent to mutations found in patients with acute megakaryoblastic leukemia and Down syndrome. The Gata-1 locus is present on the X chromosome in humans and in mice. Male mice hemizygous for the mutation (Gata-1Plt13/Y) failed to produce red blood cells and died during embryogenesis at a similar stage to Gata-1-null animals. Female mice that carry the Plt13 mutation are mosaic because of random inactivation of the X chromosome. Adult Gata-1Plt13/+ females were not anemic, but they were thrombocytopenic and accumulated abnormal megakaryocytes without a concomitant increase in megakaryocyte progenitor cells. Gata-1Plt13/+ mice contained large numbers of blast-like colony-forming cells, particularly in the fetal liver, but also in adult spleen and bone marrow, from which continuous mast cells lines were readily derived. Although the equivalent mutation to Gata-1Plt13 in humans results in production of GATA-1s, a short protein isoform initiated from a start codon downstream of the mutated initiation codon, Gata-1s was not detected in Gata-1Plt13/+ mice.
Hearing Research | 2011
Marina R. Carpinelli; Andrew K. Wise; Rachel A. Burt
Klotho-deficient mice exhibit a premature aging syndrome, a feature of which is mild hearing loss. In the present study, the hearing phenotype of Klotho mice was characterized to better determine how well this phenotype resembles presbycusis in humans. It was demonstrated that Klotho animals have auditory-evoked brainstem response (ABR) threshold shifts of 14-18 dB in response to pure tone stimuli of 4, 8, 16 and 32 kHz, and similarly, in response to clicks; however, cochlear histology and spiral ganglion neuron density appeared normal in these mice. It was further demonstrated that a vitamin D-deficient diet normalizes serum calcitriol (1,25(OH)(2)D(3)) levels and prevents hearing loss in Klotho mice. It is concluded that hearing loss in Klotho mice is caused by elevated renal 1α-hydroxylase expression and consequent excessive production of calcitriol. These findings implicate the vitamin D metabolic pathway in hearing loss and pose questions as to the mechanism by which elevated calcitriol levels mediate such hearing loss.
Cell Death and Disease | 2012
Marina R. Carpinelli; Andrew K. Wise; Benedicta D. Arhatari; Phillipe Bouillet; Shehnaaz S.M. Manji; Michael G. Manning; Anne A. Cooray; Rachel A. Burt
In this paper we describe novel and specific roles for the apoptotic regulators Bcl2 and Bim in hearing and stapes development. Bcl2 is anti-apoptotic while Bim is pro-apoptotic. Characterization of the auditory systems of mice deficient for these molecules revealed that Bcl2−/− mice suffered severe hearing loss. This was conductive in nature and did not affect sensory cells of the inner ear, with cochlear hair cells and neurons present and functional. Bcl2−/− mice were found to have a malformed, often monocrural, porous stapes (the small stirrup-shaped bone of the middle ear), but a normally shaped malleus and incus. The deformed stapes was discontinuous with the incus and sometimes fused to the temporal bones. The defect was completely rescued in Bcl2−/−Bim−/− mice and partially rescued in Bcl2−/−Bim+/− mice, which displayed high-frequency hearing loss and thickening of the stapes anterior crus. The Bcl2−/− defect arose in utero before or during the cartilage stage of stapes development. These results implicate Bcl2 and Bim in regulating survival of second pharyngeal arch or neural crest cells that give rise to the stapes during embryonic development.
PLOS ONE | 2014
Jacqueline M. Ogier; Marina R. Carpinelli; Benedicta D. Arhatari; R.C. Andrew Symons; Benjamin T. Kile; Rachel A. Burt
CHARGE syndrome is a rare human disorder caused by mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7). Characteristics of CHARGE are varied and include developmental ear and hearing anomalies. Here we report a novel mouse model of CHD7 dysfunction, termed Looper. The Looper strain harbours a nonsense mutation (c.5690C>A, p.S1897X) within the Chd7 gene. Looper mice exhibit many of the clinical features of the human syndrome, consistent with previously reported CHARGE models, including growth retardation, facial asymmetry, vestibular defects, eye anomalies, hyperactivity, ossicle malformation, hearing loss and vestibular dysfunction. Looper mice display an otosclerosis-like fusion of the stapes footplate to the cochlear oval window and blepharoconjunctivitis but not coloboma. Looper mice are hyperactive and have vestibular dysfunction but do not display motor impairment.