Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Sánchez-Hidalgo is active.

Publication


Featured researches published by Marina Sánchez-Hidalgo.


British Journal of Pharmacology | 2006

The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model

Antonio Martín; Isabel Villegas; Marina Sánchez-Hidalgo; Catalina Alarcón de la Lastra

Neutrophil infiltration, proinflammatory cytokines, eicosanoid generation and oxidative stress have been implicated in colitis. Resveratrol is a polyphenolic compound found in grapes and wine, with multiple pharmacological actions, including anti‐inflammatory, antioxidant, antitumour and immunomodulatory activities. In a previous report, we documented that resveratrol decreases the degree of inflammation associated with acute experimental colonic inflammation, but its effects on chronic experimental colitis remain undetermined. The aim of this research was to investigate the effects of resveratrol on the chronic colonic injury caused by intracolonic instillation of trinitrobenzenesulphonic acid (TNBS) in rats. The inflammatory response was assessed by histology and myeloperoxidase activity. Tumour necrosis factor alpha (TNF‐α) production, histological and histochemical analysis of the lesions were also carried out. We determined the production of prostaglandin (PG) E2 and D2 in colon mucosa, as well as cyclooxygenase (COX)‐1 and ‐2 and nuclear transcription factor NF‐kappa B (NF‐κB) p65 protein expression. Finally, since resveratrol has been found to modulate apoptosis, we intended to elucidate its effects on colonic mucosa under chronic inflammatory conditions. Resveratrol (10 mg kg−1 day−1) significantly attenuated the damage score and corrected the disturbances in morphology associated to injury. In addition, the degree of neutrophil infiltration and the levels of TNF‐α were significantly ameliorated. Resveratrol did not modify PGD2 levels but returned the decreased PGE2 values to basal levels and also reduced COX‐2 and the NF‐κB p65 protein expression. Furthermore, treatment of rats with resveratrol caused a significant increase of TNBS‐induced apoptosis in colonic cells. In conclusion, resveratrol reduces the damage in chronic experimentally induced colitis, alleviates the oxidative events, returns PGE2 production to basal levels and stimulates apoptosis in colonic cells.


Journal of Pineal Research | 2006

Protective effects of melatonin in experimental free radical-related ocular diseases

Andrew W. Siu; Maria D. Maldonado; Marina Sánchez-Hidalgo; Dun Xian Tan; Russel J. Reiter

Abstract:  Melatonin (N‐acetyl‐5‐methoxytryptamine) is an indoleamine with a range of antioxidative properties. Melatonin is endogenously produced in the eye and in other organs. Current evidence suggests that melatonin may act as a protective agent in ocular conditions such as photo‐keratitis, cataract, glaucoma, retinopathy of prematurity and ischemia/reperfusion injury. These diseases are sight‐threatening and they currently remain, for the most part, untreatable. The pathogenesis of these conditions is not entirely clear but oxidative stress has been proposed as one of the causative factors. Elevated levels of various reactive oxygen and nitrogen species have been identified in diseased ocular structures. These reactants damage the structure and deplete the eye of natural defense systems, such as the antioxidant, reduced glutathione, and the antioxidant enzyme superoxide dismutase. Oxidative damage in the eye leads to apoptotic degeneration of retinal neurons and fluid accumulation. Retinal degeneration decreases visual sensitivity and even a small change in the fluid content of the cornea and crystalline lens is sufficient to disrupt ocular transparency. In the eye, melatonin is produced in the retina and in the ciliary body. Continuous regeneration of melatonin in the eye offers a frontier antioxidative defense for both the anterior and posterior eye. However, melatonin production is minimal in newborns and its production gradually wanes in aging individuals as indicated by the large drop in circulating blood concentrations of the indoleamine. These individuals are possibly at risk of contracting degenerative eye diseases that are free radical‐based. Supplementation with melatonin, a potent antioxidant, in especially the aged population should be considered as a prophylaxis to preserve visual functions. It may benefit many individuals worldwide, especially in countries where access to medical facilities is limited.


Journal of Pharmacy and Pharmacology | 2006

Pharmacological utility of melatonin in the treatment of septic shock: Experimental and clinical evidence

Escames G; Darío Acuña-Castroviejo; Luis C. López; Dun Xian Tan; Maria D. Maldonado; Marina Sánchez-Hidalgo; Josefa León; Russel J. Reiter

Sepsis is a major cause of mortality in critically ill patients and develops as a result of the host response to infection. In recent years, important advances have been made in understanding the pathophysiology and treatment of sepsis. Mitochondria play a central role in the intracellular events associated with inflammation and septic shock. One of the current hypotheses for the molecular mechanisms of sepsis is that the enhanced nitric oxide (NO) production by mitochondrial nitric oxide synthase (mtNOS) leads to excessive peroxynitrite (ONOO−) production and protein nitration, impairing mitochondrial function. Despite the advances in understanding of its pathophysiology, therapy for septic shock remains largely symptomatic and supportive. Melatonin has well documented protective effects against the symptoms of severe sepsis/shock in both animals and in humans; its use for this condition significantly improves survival. Melatonin administration counteracts mtNOS induction and respiratory chain failure, restores cellular and mitochondrial redox status, and reduces proinflammatory cytokines. Melatonin clearly prevents multiple organ failure, circulatory failure, and mitochondrial damage in experimental sepsis, and reduces lipid peroxidation, indices of inflammation and mortality in septic human newborns. Considering these effects of melatonin and its virtual absence of toxicity, the use of melatonin (along with conventional therapy) to preserve mitochondrial bioenergetics as well as to limit inflammatory responses and oxidative damage should be seriously considered as a treatment option in both septic newborn and adult patients. This review summarizes the data that provides a rationale for using melatonin in septic shock patients.


Biochemical Pharmacology | 2011

Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn's disease.

María Ángeles Rosillo; Marina Sánchez-Hidalgo; Ana Cárdeno; C. Alarcón de la Lastra

Current epidemiological and experimental studies support a beneficial role of dietary polyphenols in several gastrointestinal diseases, including inflammatory bowel disease. The aim of this study was to gain a better understanding of the effects of a naturally occurring polyphenol, ellagic acid, present in some fruits such as pomegranate, raspberries and nuts among others, in an experimental murine model of Crohns disease by intra-colonic administration of TNBS in rats. Analysis of the lesions were carried out by macroscopic and histological technics. Inflammation response was assessed by histology and myeloperoxidase activity. iNOS and COX-2 are upregulated by MAPKs and NF-κB nuclear transcription factor in intestinal epithelial cells thus, we determined the expression of iNOS, COX-2 and the involvement of the p38, JNK, ERK1/2 MAPKs and NF-κB signalling in the protective effect of EA by western blotting. Oral administration of EA (10-20 mg/kg) diminished the severity and extension of the intestinal injuries induced by TNBS although there was no observed a significant dose-response. In addition, EA increased mucus production in goblet cells in colon mucosa, decreased neutrophil infiltration and pro-inflammatory proteins COX-2 and iNOS overexpression. Also EA was capable of reducing the activation of p38, JNK and ERK1/2 MAPKs, preventing the inhibitory protein IκB-degradation and inducing an inhibition of the nuclear translocation level of p65 in colonic mucosa. In conclusion, EA reduces the damage in a rat model of Crohns disease, alleviates the oxidative events and returns pro-inflammatory proteins expression to basal levels probably through MAPKs and NF-κB signalling pathways.


Pharmacological Research | 2012

Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats

María Ángeles Rosillo; Marina Sánchez-Hidalgo; Ana Cárdeno; Marina Aparicio-Soto; Susana Sánchez-Fidalgo; Isabel Villegas; Catalina Alarcón de la Lastra

Dietary polyphenols present in Punica granatum (pomegranate), such as ellagitannins and ellagic acid (EA) have shown to exert anti-inflammatory and antioxidant properties. This study was designed to evaluate the effects of a dietary EA-enriched pomegranate extract (PE) in a murine chronic model of Cronhs disease (CD). Colonic injury was induced by intracolonic instillation of trinitrobenzensulfonic acid (TNBS). Rats were fed with different diets during 30 days before TNBS instillation and 2 weeks before killing: (i) standard, (ii) PE 250 mg/kg/day, (iii) PE 500 mg/kg/day, (iv) EA 10 mg/kg/day and (v) EA 10 mg/kg/day enriched-PE 250 mg/kg/day. Inflammation response was assessed by histology and MPO activity and TNF-α production. Besides, colonic expressions of iNOS, COX-2, p38, JNK, pERK1/2 MAPKs, IKBα and nuclear p65 NF-κB were studied by western blotting. MPO activity and the TNF-α levels were significantly reduced in dietary fed rats when compared with TNBS group. Similarly, PE and an EA-enriched PE diets drastically decreased COX-2 and iNOS overexpression, reduced MAPKs phosporylation and prevented the nuclear NF-κB translocation. Dietary supplementation of EA contributes in the beneficial effect of PE in this experimental colitis model and may be a novel therapeutic strategy to manage inflammatory bowel disease (IBD).


Journal of Nutritional Biochemistry | 2013

Dietary extra virgin olive oil polyphenols supplementation modulates DSS-induced chronic colitis in mice

Susana Sánchez-Fidalgo; Ana Cárdeno; Marina Sánchez-Hidalgo; Marina Aparicio-Soto; Catalina Alarcón de la Lastra

We evaluated the protective effect of dietary extra virgin olive oil (EVOO) polyphenol extract (PE) supplementation in the inflammatory response associated to chronic colitis model. Six-week-old mice were randomized in four dietary groups: standard diet (SD), EVOO diet and both enriched with PE (850 ppm) (SD+PE and EVOO+PE). After 30 days, animals that were exposed to dextran sodium sulfate (DSS) (3%) followed by 3 weeks of drinking water developed chronic colitis, which was evaluated by disease activity index (DAI) and histology. Cell proliferation was analyzed by immunohistochemical and changes in monocyte chemotactic protein (MCP)-1 and tumor necrosis factor (TNF)-α mRNA expression by quantitative real-time polymerase chain reaction. Colonic expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs), IκBα inhibitory and peroxisome proliferator-activated receptor gamma (PPARγ) were determined by western blotting. SD-DSS group showed a significant increase of DAI, histological damage and cell proliferation, as well as an up-regulation of TNF-α, MCP-1, COX-2 and iNOS proteins. p38 and JNK MAPKs phosphorylation, IκBα degradation and PPARγ deactivation were also observed. However, in DSS-treated and EVOO+PE-fed mice, DAI and cell proliferation were significantly reduced, as well as MCP-1, TNF-α, COX-2 and iNOS expression levels. In addition, this dietary group, notably down-regulated JNK phosphorylation, prevented IκBα degradation and PPARγ deactivation. These results demonstrated, for the first time, that EVOO-PE supplementation possessed marked protective effects on experimental colitis through PPARγ up-regulation and nuclear transcription factor-kappa B and MAPK signaling pathway inhibition, decreasing the inflammatory cascade. We concluded that PE-enriched EVOO diet could be a beneficial functional food on ulcerative colitis.


Current Medicinal Chemistry | 2013

An Up-date of Olive Oil Phenols in Inflammation and Cancer: Molecular Mechanisms and Clinical Implications

Ana Cárdeno; Marina Sánchez-Hidalgo; Catalina Alarcón-de-la-Lastra

Olive oil (OO), the main fatty component of the Mediterranean diet, exhibits numerous biological functions which are beneficial for the state of health. In addition to monounsaturated fatty acid (MUFA) evidences have accumulated on the favorable properties of its minor though highly bioactive components, particularly the phenolic compounds, which have shown a broad spectrum of bioactive properties, including antioxidant and anti-inflammatory effects both associated with the origin of the main chronic diseases. Additional studies have demonstrated that the health effects of olive oil polyphenols have been also associated with their, neuroprotective, antiaging and antiatherogenic effects. On the other hand, because of their ability to modulate cell death, olive polyphenols have been proposed as chemopreventive and therapeutic agents. Thus, the purpose of this article is to review the chemistry, bioavailability and pharmacokinetic characteristics of OO polyphenols, in addition to provide the reader an up-date of their putative antioxidant, anti-inflammatory and anti-cancer activities as well as the plausible action mechanisms involved.


Current Pharmaceutical Biotechnology | 2011

Are Bacteriocins Underexploited? NOVEL Applications for OLD Antimicrobials

Manuel Montalbán-López; Marina Sánchez-Hidalgo; Eva Valdivia; Manuel Martínez-Bueno; Mercedes Maqueda

Bacteriocins are ribosomally synthesized (poly)peptides produced by almost all prokaryotic lineages. Bacteriocins from lactic acid bacteria (LAB) and bacteriocin-producer probiotic organisms have been thoroughly studied due to their wide spectra of action, the long-term use in food fermentations and the consideration of these microorganisms as beneficial for human beings. Most of the studies on the biotechnological application of diverse bacteriocins have been focused on their use as food preservatives, nisin being the prototype successfully used in alimentation. However, bacteriocins from LAB have demonstrated a remarkable potential as therapeutics for medical or veterinary uses, alone or in combination with classical antimicrobials. Their interest is even higher now that the resistance to the antibacterials used in therapeutics is growing. In this review we explore exciting opportunities for bacteriocin and probiotic applications, highlighting the possibilities for new and innovative research in order to give the necessary attention to this type of natural molecules that exhibit a great potential.


Journal of Pineal Research | 2009

Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging.

Marina Sánchez-Hidalgo; Juan Miguel Guerrero Montávez; María del Pilar Carrascosa‐Salmoral; María del Carmen Naranjo Gutierrez; Patricia J. Lardone; Catalina Alarcón De La Lastra Romero

Abstract:  Aging is a complex process associated with a diminished ability to respond to stress, a progressive increase in free radical generation and a decline in immune function. Melatonin, a molecule with a great functional versatility exerts anti‐oxidant, oncostatic, immunomodulatory, and anti‐aging properties. Melatonin levels drop during aging and it has been speculated that the loss of melatonin may accelerate aging. This study was designed to elucidate whether aging involves responsiveness to reduced melatonin. Melatonin membrane receptor (MT1 and MT2) expression and MT1 protein expression were analyzed in extrapineal tissues (thymus, spleen, liver, kidney, and heart) of 3‐ and 12‐month‐old rats using real time polymerase chain reaction and western blotting analysis. Moreover, melatonin in tissues was measured by high performance liquid chromatography. We report for the first time, an age‐related reduction in mRNA MT1 and MT2 expression levels as well as MT1 protein expression in all tissues tested except the thymus, where surprisingly, both melatonin receptor levels were significantly higher in 12‐month‐old rats and MT1 protein expression maintained unchanged with age. Diminished melatonin concentrations were measured in spleen, liver, and heart during aging. As a conclusion, physiological aging seems to exert responsiveness to melatonin and consequently, the loss of this potent anti‐oxidant may contribute to onset of aging.


Applied and Environmental Microbiology | 2003

The Genes Coding for Enterocin EJ97 Production by Enterococcus faecalis EJ97 Are Located on a Conjugative Plasmid

Marina Sánchez-Hidalgo; Mercedes Maqueda; Antonio Gálvez; Hikmate Abriouel; Eva Valdivia; Manuel Martínez-Bueno

ABSTRACT Enterococcus faecalis EJ97 produces a cationic bacteriocin (enterocin EJ97) of low molecular mass (5,327.7 Da). The complete amino acid sequence of enterocin EJ97 was elucidated after automated microsequencing of oligopeptides generated by endoproteinase GluC digestion and cyanogen bromide treatment. Transfer of the 60-kb conjugative plasmid pEJ97 from the bacteriocinogenic strain E. faecalis EJ97 to E. faecalis OG1X conferred bacteriocin production and resistance on the recipient. The genetic determinants of enterocin EJ97 were located in an 11.3-kb EcoRI-BglII DNA fragment of pEJ97. This region was cloned and sequenced. It contains the ej97A structural gene plus three open reading frames (ORFs) (ej97B, ej97C, and ej97D) and three putative ORFs transcribed in the opposite direction (orfA, orfB, and orfC). The gene ej97A translated as a 44-amino-acid residue mature protein lacking a leader peptide with no homology to other bacteriocins described so far. The product of ej97B (Ej97B) shows strong homology in its C-terminal domain to the superfamily of bacterial ATP-binding cassette transporters. The products of ej97C (Ej97C) and ej97D (Ej97D) could be proteins with 71 and 64 residues, respectively, of unknown functions and with no significant similarity to known proteins. There are two additional ORFs (ORF1 and ORF6) flanking the ej97 module, which have been identified as a transposon-like structure (tnp). ORF1 shows similarities to transposase of the Lactococcus lactis element ISS1 and is up to 50% identical to IS1216. This is flanked by two 18-bp inverted repeats (IRs) that are almost identical to those of ISS1 and IS1216. ORF6 (resEJ97) shows strong homology to the resolvase of plasmid pAM373 and up to 40 to 50% homology with the recombinase of several multiresistant plasmids and transposons from Staphylococcus aureus and E. faecalis. These data suggest that EJ97 could represent a new class of bacteriocins with a novel secretion mechanism and that the whole structure could be a composite transposon. Furthermore, two additional gene clusters were found: one cluster is probably related to the region responsible for the replication of plasmid pEJ97, and the second cluster is related to the sex pheromone response. These regions showed a high homology to the corresponding regions of the conjugative plasmids pAM373, pPD1, and pAD1 of E. faecalis, suggesting that they have a common origin.

Collaboration


Dive into the Marina Sánchez-Hidalgo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge