Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Semchenko is active.

Publication


Featured researches published by Marina Semchenko.


New Phytologist | 2014

Plant root exudates mediate neighbour recognition and trigger complex behavioural changes

Marina Semchenko; Sirgi Saar; Anu Lepik

Some plant species are able to distinguish between neighbours of different genetic identity and attempt to pre-empt resources through root proliferation in the presence of unrelated competitors, but avoid competition with kin. However, studies on neighbour recognition have met with some scepticism because the mechanisms by which plants identify their neighbours have remained unclear. In order to test whether root exudates could mediate neighbour recognition in plants, we performed a glasshouse experiment in which plants of Deschampsia caespitosa were subjected to root exudates collected from potential neighbours of different genetic identities, including siblings and individuals belonging to the same or a different population or species. Our results show that root exudates can carry specific information about the genetic relatedness, population origin and species identity of neighbours, and trigger different responses at the whole root system level and at the level of individual roots in direct contact with locally applied exudates. Increased root density was mainly achieved through changes in morphology rather than biomass allocation, suggesting that plants are able to limit the energetic cost of selfish behaviour. This study reveals a new level of complexity in the ability of plants to interpret and react to their surroundings.


Journal of Ecology | 2013

Plants are least suppressed by their frequent neighbours: the relationship between competitive ability and spatial aggregation patterns

Marina Semchenko; Maria Abakumova; Anu Lepik; Kristjan Zobel

Summary 1. Previous studies have concluded that spatial aggregation of conspecifics should benefit weak competitors and put stronger competitors at a disadvantage, thus promoting plant species coexistence. However, if competitive ability is viewed as a behavioural trait, it becomes evident that traits determining spatial patterns and competitive ability could co-evolve, resulting in greater dispersal in stronger competitors and reduced competitive ability in spatially aggregated species. 2. To test this prediction, we combined spatial data from a field survey of seven temperate grassland communities with the results of a common-garden competition experiment involving 28 focal species. 3. We found that species exhibiting strong conspecific aggregation and infrequent heterospecific encounters in the field maintained greater growth in competition with conspecifics than with heterospecifics. In contrast, species that mostly encountered heterospecific neighbours in the field achieved greater growth when surrounded by heterospecific than conspecific neighbours, indicating greater competitive ability. The observed patterns of conspecific aggregation were related to variation in clonal dispersal characteristics and there was a direct positive relationship between clonal dispersal distance and competitive ability. 4. Synthesis. Our study demonstrates that viewing competitive ability as a behavioural trait that imposes different costs and benefits on an individual depending on the identity of its neighbours can provide new insights into the long-debated topic of mechanisms promoting plant species coexistence.


New Phytologist | 2016

Plasticity in plant functional traits is shaped by variability in neighbourhood species composition

Maria Abakumova; Kristjan Zobel; Anu Lepik; Marina Semchenko

Plant functional traits can vary widely as a result of phenotypic plasticity to abiotic conditions. Trait variation may also reflect responses to the identity of neighbours, although not all species are equally responsive to their biotic surroundings. We hypothesized that responses to neighbours are shaped by spatial community patterns and resulting variability in neighbour composition. More precisely, we tested the theoretical prediction that plasticity is most likely to evolve if alternative environments (in this case, different neighbour species) are common and encountered at similar frequencies. We estimated the frequencies of encountering different neighbour species in the field for 27 grassland species and measured the aboveground morphological responses of each species to conspecific vs heterospecific neighbours in a common garden. Responses to neighbour identity were dependent on how frequently the experimental neighbours were encountered by the focal species in their home community, with the greatest plasticity observed in species that encountered both neighbours (conspecific and heterospecific) with high and even frequency. Biotic interactions with neighbouring species can impose selection on plasticity in functional traits, which may feed back through trait divergence and niche differentiation to influence species coexistence and community structure.


New Phytologist | 2017

Intraspecific genetic diversity modulates plant–soil feedback and nutrient cycling

Marina Semchenko; Sirgi Saar; Anu Lepik

Plant genetic diversity can affect ecosystem functioning by enhancing productivity, litter decomposition and resistance to natural enemies. However, the mechanisms underlying these effects remain poorly understood. We hypothesized that genetic diversity may influence ecosystem processes by eliciting functional plasticity among individuals encountering kin or genetically diverse neighbourhoods. We used soil conditioned by groups of closely related (siblings) and diverse genotypes of Deschampsia cespitosa - a species known to exhibit kin recognition via root exudation - to investigate the consequences of kin interactions for root litter decomposition and negative feedback between plants and soil biota. Genetically diverse groups produced root litter that had higher nitrogen (N) content, decomposed faster and resulted in greater N uptake by the next generation of seedlings compared with litter produced by sibling groups. However, a similar degree of negative soil feedback on plant productivity was observed in soil conditioned by siblings and genetically diverse groups. This suggests that characteristics of roots produced by sibling groups slow down N cycling but moderate the expected negative impact of soil pathogens in low-diversity stands. These findings highlight interactions between neighbouring genotypes as an overlooked mechanism by which genetic diversity can affect biotic soil feedback and nutrient cycling.


Plant and Soil | 2018

Different sets of belowground traits predict the ability of plant species to suppress and tolerate their competitors

Marina Semchenko; Anu Lepik; Maria Abakumova; Kristjan Zobel

Background and aimsFunctional traits may underlie differences in niches, which promote plant species co-existence, but also differences in competitive ability, which drive competitive exclusion. Empirical evidence concerning the contribution of different traits to niche differentiation and the ability to supress and tolerate competitors is very limited, particularly when considering belowground interactions.MethodsWe grew 26 temperate grassland species along a density gradient of interspecific competitors to determine which belowground traits a) explain species’ ability to suppress and tolerate neighbours and b) contribute to niche differentiation, such that species with dissimilar trait values experience reduced competition.ResultsWe found that having larger root systems with extensive horizontal spread and lower root tissue density enabled efficient suppression of neighbours but did not significantly contribute to the ability to tolerate competition. Species with deeper root systems, lower specific root length and less branched roots were better at tolerating competition, but these traits did not significantly affect the ability to suppress neighbours. None of the measured traits contributed significantly to niche differentiation, either individually or in combination.ConclusionsThis study provides little support for belowground traits contributing to species co-existence through niche differentiation. Instead, different sets of weakly correlated traits enable plants to either suppress or tolerate their competitors.


The ISME Journal | 2018

Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities

John Davison; Mari Moora; Maarja Öpik; Leho Ainsaar; Marc Ducousso; Inga Hiiesalu; Teele Jairus; Nancy Collins Johnson; Philippe Jourand; Rein Kalamees; Kadri Koorem; Jean Yves Meyer; Kersti Püssa; Ülle Reier; Meelis Pärtel; Marina Semchenko; Anna Traveset; Martti Vasar; Martin Zobel

Island biogeography theory is one of the most influential paradigms in ecology. That island characteristics, including remoteness, can profoundly modulate biological diversity has been borne out by studies of animals and plants. By contrast, the processes influencing microbial diversity in island systems remain largely undetermined. We sequenced arbuscular mycorrhizal (AM) fungal DNA from plant roots collected on 13 islands worldwide and compared AM fungal diversity on islands with existing data from mainland sites. AM fungal communities on islands (even those >6000 km from the closest mainland) comprised few endemic taxa and were as diverse as mainland communities. Thus, in contrast to patterns recorded among macro-organisms, efficient dispersal appears to outweigh the effects of taxogenesis and extinction in regulating AM fungal diversity on islands. Nonetheless, AM fungal communities on more distant islands comprised a higher proportion of previously cultured and large-spored taxa, indicating that dispersal may be human-mediated or require tolerance of significant environmental stress, such as exposure to sunlight or high salinity. The processes driving large-scale patterns of microbial diversity are a key consideration for attempts to conserve and restore functioning ecosystems in this era of rapid global change.


Plant and Soil | 2018

Spatial heterogeneity in root litter and soil legacies differentially affect legume root traits

Sirgi Saar; Marina Semchenko; Janna M. Barel; Gerlinde B. De Deyn

Background and AimsPlants affect the soil environment via litter inputs and changes in biotic communities, which feed back to subsequent plant growth. Here we investigated the individual contributions of litter and biotic communities to soil feedback effects, and plant ability to respond to spatial heterogeneity in soil legacy.MethodsWe tested for localised and systemic responses of Trifolium repens to soil biotic and root litter legacy of seven grassland species by exposing half of a root system to control soil and the other half to specific inoculum or root litter.ResultsSoil inoculation triggered a localised reduction in root length while litter locally increased root biomass independent of inoculum or litter species identity. Nodule formation was locally suppressed in response to soil conditioned by another legume (Vicia cracca) and showed a trend towards systemic reduction in response to conspecific soil. V. cracca litter also caused a systemic response with thinner roots produced in the part of the root system not directly exposed to the litter.ConclusionsSpatial heterogeneity in root litter distribution and soil communities generate distinct local and systemic responses in root morphology and nodulation. These responses can influence plant-mutualist interactions and nutrient cycling, and should be included in plant co-existence models.


Journal of Ecology | 2012

Positive effect of shade on plant growth: amelioration of stress or active regulation of growth rate?

Marina Semchenko; Mari Lepik; Lars Götzenberger; Kristjan Zobel


Functional Ecology | 2012

Kin recognition is density-dependent and uncommon among temperate grassland plants

Anu Lepik; Maria Abakumova; Kristjan Zobel; Marina Semchenko


Field Crops Research | 2005

The effect of breeding on allometry and phenotypic plasticity in four varieties of oat (Avena sativa L.)

Marina Semchenko; Kristjan Zobel

Collaboration


Dive into the Marina Semchenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerlinde B. De Deyn

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Janna M. Barel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge