Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Sironi is active.

Publication


Featured researches published by Marina Sironi.


Immunity | 1997

Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment.

Maria Romano; Marina Sironi; Carlo Toniatti; Nadia Polentarutti; Paolo Fruscella; Pietro Ghezzi; Raffaella Faggioni; Walter Luini; Victor van Hinsbergh; Silvano Sozzani; Federico Bussolino; Valeria Poli; Gennaro Ciliberto; Alberto Mantovani

IL-6-/- mice showed impaired leukocyte accumulation in subcutaneous air pouches. Defective leukocyte accumulation was not due to a reduced migratory capacity of IL-6-/- leukocytes and was associated with a reduced in situ production of chemokines. These observations led to a reexamination of the interaction of IL-6 with endothelial cells (EC). EC express only the gp130 signal transducing chain and not the subunit-specific IL-6R and are therefore unresponsive to IL-6. However, EC are responsive to a combination of IL-6 and soluble IL-6R as measured by the activation of STAT3, chemokine expression, and augmentation of ICAM-1. Activation by IL-6-IL-6R complexes was inhibited by an IL-6 receptor antagonist and potentiated by a superagonist. Hence, in vivo and in vitro evidence supports the concept that the IL-6 system plays an unexpected positive role in local inflammatory reactions by amplifying leukocyte recruitment.


Journal of Immunology | 2000

Vitamin D3 Affects Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells

Lorenzo Piemonti; Paolo Monti; Marina Sironi; Paolo Fraticelli; Biagio Eugenio Leone; Elena Dal Cin; Paola Allavena; Valerio Di Carlo

We studied the effects of 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) on differentiation, maturation, and functions of dendritic cells (DC) differentiated from human monocytes in vitro in the presence of GM-CSF and IL-4 for 7 days. Recovery and morphology were not affected by 1α,25-(OH)2D3 up to 100 nM. DC differentiated in the presence of 10 nM 1α,25-(OH)2D3 (D3-DC) showed a marked decrease in the expression of CD1a, while CD14 remained elevated. Mannose receptor and CD32 were significantly increased, and this correlated with an enhancement of endocytic activity. Costimulatory molecules such as CD40 and CD86 were slightly decreased or nonsignificantly affected (CD80 and MHC II). However, after induction of DC maturation with LPS or incubation with CD40 ligand-transfected cells, D3-DC showed marginal increases in MHC I, MHC II, CD80, CD86, CD40, and CD83. The accessory cell function of D3-DC in classical MLR was also inhibited. Moreover, allogeneic T cells stimulated with D3-DC were poor responders in a second MLR to untreated DC from the same or an unrelated donor, thus indicating the onset of a nonspecific hyporesponsivity. In conclusion, our data suggest that 1α,25-(OH)2D3 may modulate the immune system, acting at the very first step of the immune response through the inhibition of DC differentiation and maturation into potent APC.


Journal of Immunology | 2003

Cross-Linking of the Mannose Receptor on Monocyte-Derived Dendritic Cells Activates an Anti-Inflammatory Immunosuppressive Program

Marcello Chieppa; Giancarlo Bianchi; Andrea Doni; Annalisa Del Prete; Marina Sironi; Gordana Laškarin; Paolo Monti; Lorenzo Piemonti; Andrea Biondi; Alberto Mantovani; Martino Introna; Paola Allavena

Immature monocyte-derived dendritic cells (DC) strongly express the endocytic mannose receptor (MR). Addition of a specific anti-MR mAb (clone PAM-1) for 24 h to cultures of immature DC induced phenotypical and functional maturation of the cells, assessed as up-regulation of costimulatory molecules and CD83, and chemotactic response to CCL19. A different isotype-matched anti-MR mAb (clone 19.2) had no significant effect. Engagement of MR with mAb PAM-1 induced the production of the anti-inflammatory cytokines IL-10, IL-1R antagonist, and of the nonsignaling IL-1R type II. In contrast IL-1β, TNF, and IL-12 were not produced. PAM-1-treated DC were unable to polarize Th1 effector cells and did not secrete the chemokines CXCL10 and CCL19; in turn, they produced large amounts of CCL22 and CCL17, thus favoring the amplification of Th2 circuits. T cells cocultured with PAM-1-matured DC initially proliferated but later became anergic and behaved as suppressor/regulatory cells. Natural ligands binding to MR had differential effects. MUC III (a partially purified mucin), biglycan (a purified complex proteoglycan), and mannosylated lipoarabinomannan from Mycobacterium tuberculosis affected cytokine production with high IL-10, IL-1R antagonist, IL-1R type II, and inhibition of IL-12. In contrast, mannan, dextran, and thyroglobulin had no significant effect. In conclusion, the appropriate engagement of the MR by mAb PAM-1 and selected natural ligands elicit a secretory program in mono-derived DC characterized by a distinct profile of cytokines/chemokines with the ability to dampen inflammation and to inhibit the generation of Th1-polarized immune responses.


Arthritis & Rheumatism | 2008

The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis

Marco Gattorno; Alessandra Piccini; Denise Lasigliè; Sara Tassi; Giacomo Brisca; Sonia Carta; Laura Delfino; Francesca Ferlito; Maria Antonietta Pelagatti; Francesco Caroli; Antonella Buoncompagni; Stefania Viola; Anna Loy; Marina Sironi; Annunciata Vecchi; Angelo Ravelli; Alberto Martini; Anna Rubartelli

OBJECTIVE To assess the clinical response to interleukin-1 (IL-1) blockade and in vitro IL-1beta and IL-18 secretion in patients with systemic-onset juvenile idiopathic arthritis (JIA). METHODS Twenty-two patients with systemic-onset JIA were treated with the IL-1 receptor antagonist (IL-1Ra) anakinra. Monocytes from 18 patients and 20 healthy donors were activated by different Toll-like receptor ligands. Intracellular and secreted IL-1beta and IL-18 were analyzed by Western blotting and enzyme-linked immunosorbent assay. RESULTS Ten patients with systemic-onset JIA exhibited a dramatic response to anakinra and were classified as complete responders. Eleven patients had an incomplete response or no response, and 1 patient could not be classified in terms of response. Compared with patients who had an incomplete response or no response, complete responders had a lower number of active joints (P = 0.02) and an increased absolute neutrophil count (P = 0.02). In vitro IL-1beta and IL-18 secretion in response to various stimuli was not increased and was independent of treatment efficacy. Likewise, secretion of IL-1Ra by monocytes from patients with systemic-onset JIA was not impaired. An overall low level of IL-1beta secretion upon exposure to exogenous ATP was observed, unrelated to treatment responsiveness or disease activity. CONCLUSION Two subsets of systemic-onset JIA can be identified according to patient response to IL-1 blockade. The 2 subsets appear to be characterized by some distinct clinical features. In vitro secretion of IL-1beta and IL-18 by monocytes from patients with systemic-onset JIA is not increased and is independent of both treatment outcome and disease activity.


Journal of Clinical Investigation | 2001

Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses

Paolo Fraticelli; Marina Sironi; Giancarlo Bianchi; Daniele D'Ambrosio; Cristina Albanesi; Antonella Stoppacciaro; Marcello Chieppa; Paola Allavena; Luigi Ruco; Giampiero Girolomoni; Francesco Sinigaglia; Annunciata Vecchi; Alberto Mantovani

Fractalkine (FKN, CX3CL1) is a membrane-bound CX3C chemokine induced by primary proinflammatory signals in vascular endothelial cells (ECs). Here we examined the role of FKN in polarized Th1 or Th2 responses. Proinflammatory signals, including LPS, IL-1, TNF, and CD40 ligand, induced FKN, as did IFN-gamma, which had synergistic activity with TNF. IL-4 and IL-13 did not stimulate the expression of FKN and markedly reduced induction by TNF and IFN-gamma. TNF alone or combined with IFN-gamma also induced release of soluble FKN, which was inhibited by IL-4 and IL-13. In light of this differential regulation of FKN by the master cytokines that control polarized responses, we analyzed the interaction of FKN with natural killer (NK) cells and polarized T-cell populations. NK cells expressed high levels of the FKN receptor CX3CR1 and responded to FKN. CX3CR1 was preferentially expressed in Th1 compared with Th2 cells. Th1 but not Th2 cells responded to FKN. By immunohistochemistry, FKN was expressed on ECs in psoriasis, a Th1-dominated skin disorder, but not in Th2-driven atopic dermatitis. Similarly, ECs in Mycobacterium tuberculosis granulomatous lymphadenitis, but not those in reactive lymph node hyperplasia or in Castelmans disease, showed immunoreactive FKN. These results indicate that regulated expression of FKN in ECs participates in an amplification circuit of polarized type I responses.


Laboratory Investigation | 2000

Inhibition of monocyte chemotactic protein-1 synthesis by statins

Maria Romano; Luisa Diomede; Marina Sironi; Lucia Massimiliano; Marcello Sottocorno; Nadia Polentarutti; Angelo Guglielmotti; Diego Albani; Alessandra Bruno; Paolo Fruscella; Mario Salmona; Annunciata Vecchi; Mario Pinza; Alberto Mantovani

The beneficial effects of statins on the reduction of cardiovascular events has been partly attributed to their anti-inflammatory properties. In the complex of the different pathogenetic events leading to atherosclerosis, recent data suggest a central role of monocyte chemotactic protein-1 (MCP-1), because mice knock-out for MCP-1 or its receptor CC-chemokine receptor 2 were considerably resistant to plaque formation. In this study we investigated the effect of different statins on in vitro and in vivo production of MCP-1. Lovastatin and simvastatin caused a dose-dependent inhibition of MCP-1 production in peripheral blood mononuclear cells exposed to lipopolysaccharide or inactivated Streptococcus hemoliticus and in human endothelial cells exposed to interleukin-1β. The addition of mevalonate overrode the inhibitory effect of statins indicating that mevalonate-derived products are important for chemokine production. The in vivo anti-inflammatory effect of statins was investigated using the mouse air-pouch model of local inflammation. Lovastatin and pravastatin were orally administered to mice according to a treatment schedule that significantly inhibited the hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity without affecting total blood cholesterol. At the dose of 10 mg/kg, lovastatin and pravastatin reduced by approximately 50% the lipopolysaccharide-induced leukocytes recruitment and the exudate MCP-1 production. In conclusion, statins, by inhibiting mevalonate-derived products, reduced both in vitro and in vivo the production of chemokines involved in leukocyte migration, and this effect is unrelated to their cholesterol-lowering action.


Nature Immunology | 2010

Regulation of leukocyte recruitment by the long pentraxin PTX3

Livija Deban; Remo Castro Russo; Marina Sironi; Federica Moalli; Margherita Scanziani; Vanessa Zambelli; Ivan Cuccovillo; Antonio Bastone; Marco Gobbi; Sonia Valentino; Andrea Doni; Cecilia Garlanda; Silvio Danese; Giovanni Salvatori; Marica Sassano; Virgilio Evangelista; Barbara Rossi; Elena Zenaro; Gabriela Constantin; Carlo Laudanna; Barbara Bottazzi; Alberto Mantovani

Pentraxins are a superfamily of conserved proteins involved in the acute-phase response and innate immunity. Pentraxin 3 (PTX3), a prototypical member of the long pentraxin subfamily, is a key component of the humoral arm of innate immunity that is essential for resistance to certain pathogens. A regulatory role for pentraxins in inflammation has long been recognized, but the underlying mechanisms remain unclear. Here we report that PTX3 bound P-selectin and attenuated neutrophil recruitment at sites of inflammation. PTX3 released from activated leukocytes functioned locally to dampen neutrophil recruitment and regulate inflammation. Antibodies have glycosylation-dependent regulatory effect on inflammation. Therefore, PTX3, which is an essential component of humoral innate immunity, and immunoglobulins share functional outputs, including complement activation, opsonization and, as shown here, glycosylation-dependent regulation of inflammation.


Cellular Immunology | 1992

N-Acetylcysteine and glutathione as inhibitors of tumor necrosis factor production

Platon Peristeris; Burton D. Clark; Silvia Gatti; Raffaella Faggioni; Alberto Mantovani; Manuela Mengozzi; Scott F. Orencole; Marina Sironi; Pietro Ghezzi

TNF is a major mediator in the pathogenesis of endotoxic shock, and its inhibition has a protective effect in various animal models of sepsis or endotoxin (lipopolysaccharide, LPS) toxicity. LPS treatment also induces an oxidative damage mediated by increased production of reactive oxygen intermediates. N-Acetylcysteine (NAC) is an antioxidant and a precursor of the synthesis of glutathione (GSH) and was reported to protect against LPS toxicity and LPS-induced pulmonary edema. In this study we investigated the effect of NAC on TNF production and LPS lethality in mice. The results indicated that oral administration of NAC protects against LPS toxicity and inhibits the increase in serum TNF levels in LPS-treated mice. The inhibition was not confined to the released form of TNF, since NAC also inhibited LPS-induced spleen-associated TNF. On the other hand, the inhibitor of GSH synthesis, DL-buthionine-(SR)-sulfoximine (BSO), had the opposite effect of potentiating LPS-induced TNF production, and this was associated with a decrease in liver GSH levels. Repletion of liver GSH with NAC reversed this effect. NAC was also active in inhibiting TNF production and hepatotoxicity in mice treated with LPS in association with a sensitizing dose of Actinomycin D. These data indicate that GSH can be an endogenous modulator of TNF production in vivo. On the other hand, NAC pretreatment did not inhibit other effects of LPS, particularly induction of serum IL-6, spleen IL-1 alpha, and corticosterone, in the same experimental model, suggesting that the observed effect could be specific for TNF.


Journal of Experimental Medicine | 2005

Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin

William Vermi; Elena Riboldi; Valérie Wittamer; Francesca Gentili; Walter Luini; Simona Marrelli; Annunciata Vecchi; Jean-Denis Franssen; David Communi; Luisa Massardi; Marina Sironi; Alberto Mantovani; Marc Parmentier; Fabio Facchetti; Silvano Sozzani

Chemerin is a chemotactic agent that was recently identified as the ligand of ChemR23, a serpentine receptor expressed by activated macrophages and monocyte-derived dendritic cells (DCs). This paper shows that blood plasmacytoid and myeloid DCs express functional ChemR23. Recombinant chemerin induced the transmigration of plasmacytoid and myeloid DCs across an endothelial cell monolayer. In secondary lymphoid organs (lymph nodes and tonsils), ChemR23 is expressed by CD123+ plasmacytoid DCs and by CD1a+ DC-SIGN+ DCs in the interfollicular T cell area. ChemR23+ DCs were also observed in dermis from normal skin, whereas Langerhans cells were negative. Chemerin expression was selectively detected on the luminal side of high endothelial venules in secondary lymphoid organs and in dermal endothelial vessels of lupus erythematosus skin lesions. Chemerin+ endothelial cells were surrounded by ChemR23+ plasmacytoid DCs. Thus, ChemR23 is expressed and functional in plasmacytoid DCs, a property shared only by CXCR4 among chemotactic receptors. This finding, together with the selective expression of the cognate ligand on the luminal side of high endothelial venules and inflamed endothelium, suggests a key role of the ChemR23/chemerin axis in directing plasmacytoid DC trafficking.


American Journal of Pathology | 1994

Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin.

Francesco Colotta; Francesca Luisa Sciacca; Marina Sironi; Walter Luini; Marie J. Rabiet; Alberto Mantovani

Thrombin, in addition to being a key enzyme in hemostasis, affects a series of endothelial and leukocyte functions and thus may be involved in the regulation of inflammatory reactions. Because leukocyte recruitment and activation are important events in inflammatory and thrombotic processes, in this study we have examined the possibility that thrombin induces the production of a cytokine chemotactic for mononuclear phagocytes. Human peripheral blood mononuclear cells (PBMC) exposed in vitro to thrombin expressed transcripts of monocyte chemotactic protein-1 (MCP-1; alternative acronyms: JE, monocyte chemotactic and activating factor, tumor-derived chemotactic factor). Thrombin was two- to threefold less effective than endotoxin in inducing MCP-1 transcripts in PBMC. Among circulating mononuclear cells, monocytes were identified as the cells expressing MCP-1 in response to thrombin. Monocytes expressed thrombin receptor transcripts. Boiling, hirudin, antithrombin III, and mutation of the catalytic site serine 205 into alanine) blocked the capacity of thrombin to induce MCP-1 expression. The thrombin receptor-activating peptide mimicked the effect of thrombin in inducing MCP-1 expression. Induction of MCP-1 transcript by thrombin was not reduced by blocking interleukin-1 and tumor necrosis factor, suggesting that these mediators are not involved in thrombin-induced expression of MCP-1. In addition to monocytes, endothelial cells (EC) also expressed MCP-1 in response to thrombin, although at lower levels compared with monocytes. Actinomycin D experiments indicated that induction of MCP-1 by thrombin in PBMC and EC was gene transcription dependent. The inhibition of protein synthesis blocked thrombin-induced MCP-1 expression in PBMC, whereas it superinduced both constitutive and thrombin-inducible expression of MCP-1 in EC, indicating different mechanisms of regulation of this gene in mononuclear phagocytes versus endothelial cells. Thrombin stimulated mononuclear cells and EC to release chemotactic activity for monocytes that could be inhibited by absorption with anti-MCP-1 antibodies. Induction of a chemotactic cytokine for monocytes by thrombin points to the importance of this enzyme in regulating inflammatory processes and further indicates that hemostasis, inflammation, and immunity are strictly interconnected processes.

Collaboration


Dive into the Marina Sironi's collaboration.

Top Co-Authors

Avatar

Alberto Mantovani

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Annunciata Vecchi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Barbara Bottazzi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia Garlanda

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge