Marina Stanić
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina Stanić.
Scientific Reports | 2015
Marija Mojić; Jelena Bogdanović Pristov; Danijela Maksimovic-Ivanic; David R. Jones; Marina Stanić; Sanja Mijatović; Ivan Spasojevic
In vitro studies have shown that hydrogen peroxide (H2O2) produced by high-concentration ascorbate and cell culture medium iron efficiently kills cancer cells. This provided the rationale for clinical trials of high-dose intravenous ascorbate-based treatment for cancer. A drawback in all the in vitro studies was their failure to take into account the in vivo concentration of iron to supplement cell culture media which are characterized by low iron content. Here we showed, using two prostate cancer cell lines (LNCaP and PC-3) and primary astrocytes, that the anticancer/cytotoxic effects of ascorbate are completely abolished by iron at physiological concentrations in cell culture medium and human plasma. A detailed examination of mechanisms showed that iron at physiological concentrations promotes both production and decomposition of H2O2. The latter is mediated by Fenton reaction and prevents H2O2 accumulation. The hydroxyl radical, which is produced in the Fenton reaction, is buffered by extracellular proteins, and could not affect intracellular targets like H2O2. These findings show that anticancer effects of ascorbate have been significantly overestimated in previous in vitro studies, and that common cell culture media might be unsuitable for redox research.
Research in Microbiology | 2013
Milan Žižić; Miroslav Živić; Ivan Spasojevic; Jelena Bogdanović Pristov; Marina Stanić; Tijana Cvetić-Antić; Joanna Zakrzewska
The biological and chemical basis of vanadium action and transport in fungi is relatively poorly understood. In this study we investigated the interactions of vanadium in physiologically-relevant redox states: vanadate (+5) and vanadyl (+4), with mycelium of fungus Phycomyces blakesleeanus using EPR and (31)P NMR spectroscopy and biochemical assays. We determined that P. blakesleeanus reduces V(5+) to V(4+) in the extracellular compartment by the means of cell surface enzyme with ferricyanide reductase activity, which contains molybdenum-molybdopterin as a cofactor. Both, V(5+) and V(4+) bind to cell wall. They enter the cytoplasm via phosphate transporter and cation channels, respectively, and exhibit different metabolic effects. Vanadate provokes increased biomass production, the effects being inverted to toxic at higher V(5+) concentrations. In addition, V(5+) activates the synthesis of sugar phosphates and oligophosphates. On the other hand, V(4+) exhibits toxic effects even at low concentrations. The V(4+) detoxification route involves binding to vacuolar polyphosphates. Altogether our results imply that the mechanism of interaction of vanadium with P. blakesleeanus involves three major steps: extracellular enzymatic V(5+)/V(4+) reduction, V(4+) influx, and vacuolar storage, with an additional step - V(5+) import occurring at higher vanadate concentrations.
Research in Microbiology | 2013
Marina Stanić; Joanna Zakrzewska; Mirzeta Hadžibrahimović; Milan Žižić; Zoran Marković; Željko Vučinić; Miroslav Živić
Environmental changes can often result in oxygen deficiency which influences cellular energy metabolism, but such effects have been insufficiently studied in fungi. The effects of oxygen deprivation on respiration and phosphate metabolites in Phycomyces blakesleeanus were investigated by oxygen electrode and (31)P NMR spectroscopy. Mycelium was incubated in hypoxic and anoxic conditions for 1.5, 3 and 5 h and then reoxygenated. Participation of alternative oxidase (AOX) in total respiration increased gradually in both treatments and after 5 h of anoxia exceeded a value 50% higher than in control. Shortly after reintroduction of oxygen into the system AOX level decreased close to the control level. Oxygen deprivation also caused a reversible decrease of polyphosphate/inorganic phosphate ratio (PPc/Pi), which was strongly correlated with the increase of AOX participation in total respiration. Unexpectedly, ATP content remained almost constant, probably due to the ability of PolyP to sustain energy and phosphate homeostasis of the cell under stress conditions. This was further substantiated by the effects of azide, a cytochrome c oxidase inhibitor, which also decreased PPc/Pi ratio, but to a smaller extent in oxygen deprived than control and reoxygenated specimens.
PLOS ONE | 2014
Milan Žižić; Miroslav Živić; Vuk Maksimović; Marina Stanić; Strahinja Križak; Tijana Cvetić Antić; Joanna Zakrzewska
The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+) on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC), and polyphosphates, UDPG and ATP (31P NMR) was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+), indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2009
Miroslav Živić; Joanna Zakrzewska; Marina Stanić; T. Cvetić; Branka D. Živanović
Respiratory characteristics of germinating spores, developing mycelium and mitochondria of the fungus Phycomyces blakesleeanus were investigated by means of oxygen Clark-type electrode. The effects of respiratory inhibitors and metabolic compounds on oxygen consumption were tested. It was demonstrated that P. blakesleeanus apart of cyanide-sensitive respiration, CSR, possess alternative respiration, (cyanide-resistant respiration, CRR) which is constitutive and whose capacity decreases during development. Maximum is observed for activated spores where CRR capacity is significantly greater than CSR. After treatment with antimycin A, a third type of respiration insensitive to antimycin A and low concentration of SHAM (sufficient for inhibition of CRR), but sensitive to cyanide and high concentration of SHAM, has been expressed.
Scientific Reports | 2018
Jelena Korać; Dalibor M. Stanković; Marina Stanić; Danica Bajuk-Bogdanović; Milan Žižić; Jelena Bogdanović Pristov; Sanja Grgurić-Šipka; Ana Popović-Bijelić; Ivan Spasojevic
Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena – the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O2 reduction, and to a facilitated formation of the Epi–Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.
Research in Microbiology | 2015
Strahinja Križak; Ljiljana Nikolić; Marina Stanić; Milan Žižić; Joanna Zakrzewska; Miroslav Živić; Nataša Todorović
We describe here whole-cell currents of droplets prepared from the apical region of growing Phycomyces blakesleeanus sporangiophores. Whole-cell current recordings revealed the osmotically activated, outwardly rectifying, fast inactivating instantaneous current (ORIC) with biophysical properties closely resembling volume-regulated anionic current (VRAC). ORIC is activated under conditions of osmotically induced swelling and shows strong selectivity for anions over cations. In addition, ORIC shows voltage and time-dependent inactivation at positive potentials and recovery from inactivation at negative potentials. ORIC is blocked by anthracene-9-carboxylic acid, an anion channel blocker, in a voltage-dependent manner. This is the first report of the presence of VRAC-like current in an organism outside the chordate lineage.
Free Radical Biology and Medicine | 2018
Bojana Božić; Jelena Korać; Dalibor M. Stanković; Marina Stanić; Mima Romanović; Jelena Bogdanović Pristov; Snežana Spasić; Ana Popović-Bijelić; Ivan Spasojevic; Milica Bajcetic
&NA; An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight &bgr;‐lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These &bgr;‐lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone‐Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. Graphical abstract Figure. No caption available. Highlights&bgr;‐Lactam antibiotics showed coordination/redox interactions with Cu.Ampicillin, amoxicillin, cephalexin and ceftriaxone formed stable Cu2+ complexes.Cefaclor reduced Cu2+ to Cu1+, whereas meropenem underwent degradation.Cu2+ decreased antimicrobial effects of meropenem, amoxicillin, and ceftriaxone.
Microbiology | 2017
Marina Stanić; Strahinja Križak; Mirna Jovanović; Tanja Pajic; Ana Ćirić; Milan Žižić; Joanna Zakrzewska; Tijana Cvetić Antić; Nataša Todorović; Miroslav Živić
Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.
Chemico-Biological Interactions | 2017
Bojana Božić; Jelena Korać; Dalibor M. Stanković; Marina Stanić; Ana Popović-Bijelić; Jelena Bogdanović Pristov; Ivan Spasojevic; Milica Bajcetic
Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.