Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina V. Bryukhanova is active.

Publication


Featured researches published by Marina V. Bryukhanova.


Nature plants | 2015

Woody biomass production lags stem-girth increase by over one month in coniferous forests

Henri E. Cuny; Cyrille B. K. Rathgeber; David Frank; Patrick Fonti; Harri Mäkinen; Peter Prislan; Sergio Rossi; Edurne Martínez del Castillo; Filipe Campelo; Hanuš Vavrčík; Jesús Julio Camarero; Marina V. Bryukhanova; Tuula Jyske; Jožica Gričar; Vladimír Gryc; Martin de Luis; Joana Vieira; Katarina Čufar; Alexander V. Kirdyanov; Walter Oberhuber; Václav Treml; Jian-Guo Huang; Xiaoxia Li; Irene Swidrak; Annie Deslauriers; Eryuan Liang; Pekka Nöjd; Andreas Gruber; Cristina Nabais; Hubert Morin

Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.


Trees-structure and Function | 2013

Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability

Marina V. Bryukhanova; Patrick Fonti

Thanks to acclimation, trees overcome environmental changes and endure for centuries. The anatomy of water conducting cells is an important factor determining plant success. Forming cells are coupled with the environment and their properties are naturally archived in the wood. Its variability across tree rings can thus provide a retrospective of plant’s hydraulic adjustments. In this work, we measured lumen and wall thickness of tracheids along tree-rings to explore how trees regulate their conducting system under variable plant-water conditions. Tracheids were measured along 51 dated rings of five mature Larix decidua and Picea abies trees from a low elevation site. Anatomical-based chronologies of annual growth performance, hydraulic conductance and safety, and construction costs were built. Similarities among chronologies and the relation to monthly climate data were analyzed. Most parameters displayed high annual plasticity which was partly coherent among trees and mostly associated with radial growth. In general, summer drought reduced growth and potential hydraulic conductivity of the forming ring, and increased hydraulic safety and construction costs. To evaluate the functional relevance of the annual acclimation, the conductivity of the forming ring relative to the entire sapwood needs to be assessed.


American Journal of Botany | 2013

Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay

Patrick Fonti; Marina V. Bryukhanova; Vladimir S. Myglan; Alexander V. Kirdyanov; Oksana V. Naumova; Eugene A. Vaganov

PREMISE OF THE STUDY Xylem structure determines the hydraulic and mechanical properties of a stem, and its plasticity is fundamental for maintaining tree performance under changing conditions. Unveiling the mechanism and the range of xylem adjustment is thus necessary to anticipate climate change impacts on vegetation. METHODS To understand the mechanistic process and the functional impact of xylem responses to warming in a cold-limited environment, we investigated the relationship between temperature and tracheid anatomy along a 312-yr tree-ring chronology of Larix sibirica trees from the Altay Mountains in Russia. KEY RESULTS Climate-growth analyses indicated that warming favors wider earlywood cell lumen, thicker latewood walls, denser maximum latewood, and wider rings. The temperature signal of the latewood was stronger (r > 0.7) and covered a longer and more stable period (from June to August) than that of earlywood and tree-ring width. Long-term analyses indicated a diverging trend between lumen and cell wall of early- and latewood. CONCLUSIONS Xylem anatomy appears to respond to warming temperatures. A warmer early-growing season raises water conduction capacity by increasing the number and size of earlywood tracheids. The higher-performing earlywood tracheids promote more carbon fixation of the latewood cells by incrementing the rate of assimilation when summer conditions are favorable for growth. The diverging long-term variation of lumen and cell wall in earlywood vs. latewood suggests that xylem adjustments in latewood increase mechanical integrity and support increasing tree size under the ameliorated growing conditions.


Climate Dynamics | 2012

A multi-proxy approach for revealing recent climatic changes in the Russian Altai

Olga V. Sidorova; Matthias Saurer; Vladimir S. Myglan; Anja Eichler; Margit Schwikowski; Aleksander V. Kirdyanov; Marina V. Bryukhanova; Oksana V. Gerasimova; Ivan Kalugin; Andrey V. Daryin; Rolf T. W. Siegwolf

For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.


New Phytologist | 2017

Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers

Jesper Björklund; Kristina Seftigen; Fritz H. Schweingruber; Patrick Fonti; Georg von Arx; Marina V. Bryukhanova; Henri E. Cuny; Marco Carrer; Daniele Castagneri; David Frank

Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support.


Tree Physiology | 2016

Site-specific water-use strategies of mountain pine and larch to cope with recent climate change

Olga V. Churakova; Matthias Saurer; Marina V. Bryukhanova; Rolf T. W. Siegwolf; Christof Bigler

We aim to achieve a mechanistic understanding of the eco-physiological processes in Larix decidua and Pinus mugo var. uncinata growing on north- and south-facing aspects in the Swiss National Park in order to distinguish the short- and long-term effects of a changing climate. To strengthen the interpretation of the δ(18)O signal in tree rings and its coherence with the main factors and processes driving evaporative δ(18)O needle water enrichment, we analyzed the δ(18)O in needle, xylem and soil water over the growing season in 2013 and applied the mechanistic Craig-Gordon model (1965) for the short-term responses. We found that δ(18)O needle water strongly reflected the variability of relative humidity mainly for larch, while only δ(18)O in pine xylem water showed a strong link to δ(18)O in precipitation. Larger differences in offsets between modeled and measured δ(18)O needle water for both species from the south-facing aspects were detected, which could be explained by the high transpiration rates. Different soil water and needle water responses for the two species indicate different water-use strategies, further modulated by the site conditions. To reveal the long-term physiological response of the studied trees to recent and past climate changes, we analyzed δ(13)C and δ(18)O in wood chronologies from 1900 to 2013. Summer temperatures as well as summer and annual amount of precipitations are important factors for growth of both studied species from both aspects. However, mountain pine trees reduced sensitivity to temperature changes, while precipitation changes come to play an important role for the period from 1980 to 2013. Intrinsic water-use efficiency (WUEi) calculated for larch trees since the 1990s reached a saturation point at elevated CO2 Divergent trends between pine WUEi and δ(18)O are most likely indicative of a decline of mountain pine trees and are also reflected in decoupling mechanisms in the isotope signals between needles and tree-rings.


Trees-structure and Function | 2015

Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia

Patrick Fonti; Maria A. Tabakova; Alexander V. Kirdyanov; Marina V. Bryukhanova; Georg von Arx

Key messageThis study provides new data and an alternative framework to the debate of tree carbon economy in a context of increasing stress.AbstractFor long-living trees, the resilience in times of stress is directly linked to the amount of accessible reserves. Despite the simplicity of this principle, the understanding of how carbon reserves limit growth and/or induce mortality under global change is still debated. In this study, we quantify how anatomical properties of rays—one of the main container for carbon reserves in tree stems—vary among sites, individuals, and annual rings of Larix gmelinii growing in contrasting sites in Siberia to verify if (1) the ray proportion and anatomical structure is linked to the environment, and/or (2) to changes in other wood tissues. Our observations have highlighted that ray proportion mainly varies among individuals, but little among sites and consecutive annual rings. We also observed that ray size and density scale to the wood structure with a relatively constant ratio of ~2.5 rays per tracheid, independent of site conditions. These results suggest that the functional connection between the anatomy of rays and tracheid is unaffected by environment and highlight the importance of considering allometric relations in ecological comparisons. Comparative studies of long-term trajectory of ray proportion of living and dead trees might unravel observed variability among individuals validating the link between long-term depleted reserves and mortality.


Plant Cell and Environment | 2015

Examining the response of needle carbohydrates from Siberian larch trees to climate using compound-specific δ 13 C and concentration analyses

K. T. Rinne; Matthias Saurer; Alexander V. Kirdyanov; Marina V. Bryukhanova; A. S. Prokushkin; Olga V. Churakova; Rolf T. W. Siegwolf

Little is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound-Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ(13) C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound-specific differences in δ(13) C values as a response to climate were detected. The δ(13) C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in-depth characterization of compound-specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.


Dendrochronologia | 2016

VS-oscilloscope: A new tool to parameterize tree radial growth based on climate conditions☆

Vladimir V. Shishov; Ivan Tychkov; Margarita I. Popkova; Viсtor A. Ilyin; Marina V. Bryukhanova; Alexander V. Kirdyanov


Tree Physiology | 2015

The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia.

Katja T. Rinne; Matthias Saurer; Alexander V. Kirdyanov; Neil J. Loader; Marina V. Bryukhanova; Roland A. Werner; Rolf T. W. Siegwolf

Collaboration


Dive into the Marina V. Bryukhanova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene A. Vaganov

Siberian Federal University

View shared research outputs
Top Co-Authors

Avatar

Vladimir S. Myglan

Siberian Federal University

View shared research outputs
Top Co-Authors

Avatar

A. S. Prokushkin

Sukachev Institute of Forest

View shared research outputs
Top Co-Authors

Avatar

Maria A. Tabakova

Siberian Federal University

View shared research outputs
Top Co-Authors

Avatar

Mukhtar M. Naurzbaev

Sukachev Institute of Forest

View shared research outputs
Top Co-Authors

Avatar

Henri E. Cuny

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge