Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marine Blaquière is active.

Publication


Featured researches published by Marine Blaquière.


Journal of Cellular and Molecular Medicine | 2015

Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients

Pascal Pomiès; Julie Rodriguez; Marine Blaquière; Sami Sedraoui; Fares Gouzi; Gilles Carnac; Dalila Laoudj-Chenivesse; J. Mercier; Christian Préfaut; Maurice Hayot

The mechanisms leading to skeletal limb muscle dysfunction in chronic obstructive pulmonary disease (COPD) have not been fully elucidated. Exhausted muscle regenerative capacity of satellite cells has been evocated, but the capacity of satellite cells to proliferate and differentiate properly remains unknown. Our objectives were to compare the characteristics of satellite cells derived from COPD patients and healthy individuals, in terms of proliferative and differentiation capacities, morphological phenotype and atrophy/hypertrophy signalling, and oxidative stress status. Therefore, we purified and cultivated satellite cells from progressively frozen vastus lateralis biopsies of eight COPD patients and eight healthy individuals. We examined proliferation parameters, differentiation capacities, myotube diameter, expression of atrophy/hypertrophy markers, oxidative stress damages, antioxidant enzyme expression and cell susceptibility to H2O2 in cultured myoblasts and/or myotubes. Proliferation characteristics and commitment to terminal differentiation were similar in COPD patients and healthy individuals, despite impaired fusion capacities of COPD myotubes. Myotube diameter was smaller in COPD patients (P = 0.015), and was associated with a higher expression of myostatin (myoblasts: P = 0.083; myotubes: P = 0.050) and atrogin‐1 (myoblasts: P = 0.050), and a decreased phospho‐AKT/AKT ratio (myoblasts: P = 0.022). Protein carbonylation (myoblasts: P = 0.028; myotubes: P = 0.002) and lipid peroxidation (myotubes: P = 0.065) were higher in COPD cells, and COPD myoblasts were significantly more susceptible to oxidative stress. Thus, cultured satellite cells from COPD patients display characteristics of morphology, atrophic signalling and oxidative stress similar to those described in in vivo COPD skeletal limb muscles. We have therefore demonstrated that muscle alteration in COPD can be studied by classical in vitro cellular models.


PLOS ONE | 2016

Involvement of the FoxO1/MuRF1/Atrogin-1 Signaling Pathway in the Oxidative Stress-Induced Atrophy of Cultured Chronic Obstructive Pulmonary Disease Myotubes.

Pascal Pomiès; Marine Blaquière; Jonathan Maury; Jacques Mercier; Fares Gouzi; Maurice Hayot

Oxidative stress is thought to be one of the most important mechanisms implicated in the muscle wasting of chronic obstructive pulmonary disease (COPD) patients, but its role has never been demonstrated. We therefore assessed the effects of both pro-oxidant and antioxidant treatments on the oxidative stress levels and atrophic signaling pathway of cultured COPD myotubes. Treatment of cultured COPD myotubes with the pro-oxidant molecule H2O2 resulted in increased ROS production (P = 0.002) and protein carbonylation (P = 0.050), in association with a more pronounced atrophy of the myotubes, as reflected by a reduced diameter (P = 0.003), and the activated expression of atrophic markers MuRF1 and FoxO1 (P = 0.022 and P = 0.030, respectively). Conversely, the antioxidant molecule ascorbic acid induced a reduction in ROS production (P<0.001) and protein carbonylation (P = 0.019), and an increase in the myotube diameter (P<0.001) to a level similar to the diameter of healthy subject myotubes, in association with decreased expression levels of MuRF1, atrogin-1 and FoxO1 (P<0.001, P = 0.002 and P = 0.042, respectively). A significant negative correlation was observed between the variations in myotube diameter and the variations in the expression of MuRF1 after antioxidant treatment (P = 0.047). Moreover, ascorbic acid was able to prevent the H2O2-induced atrophy of COPD myotubes. Last, the proteasome inhibitor MG132 restored the basal atrophy level of the COPD myotubes and also suppressed the H2O2-induced myotube atrophy. These findings demonstrate for the first time the involvement of oxidative stress in the atrophy of COPD peripheral muscle cells in vitro, via the FoxO1/MuRF1/atrogin-1 signaling pathway of the ubiquitin/proteasome system.


Neurobiology of Disease | 2018

Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature

Wendy Klement; Rita Garbelli; Emma Zub; Laura Rossini; Laura Tassi; Benoit Girard; Marine Blaquière; Federica Bertaso; Julie Perroy; Frédéric de Bock; Nicola Marchi

BACKGROUND Cerebrovascular dysfunction and inflammation occur in epilepsy. Here we asked whether pericytes, a pivotal cellular component of brain capillaries, undergo pathological modifications during experimental epileptogenesis and in human epilepsy. We evaluated whether pro-inflammatory cytokines, present in the brain during seizures, contribute to pericyte morphological modifications. METHODS In vivo, unilateral intra-hippocampal kainic acid (KA) injections were performed in NG2DsRed/C57BL6 mice to induce status epilepticus (SE), epileptogenesis, and spontaneous recurrent seizures (SRS). NG2DsRed mice were used to visualize pericytes during seizure progression. The effect triggered by recombinant IL-1β, TNFα, or IL-6 on pericytes was evaluated in NG2DsRed hippocampal slices and in human-derived cell culture. Human brain specimens obtained from temporal lobe epilepsy (TLE) with or without sclerosis (HS) and focal cortical dysplasia (FCD-IIb) were evaluated for pericyte-microglial cerebrovascular assembly. RESULTS A disarray of NG2DsRed+ pericyte soma and ramifications was found 72 h post-SE and 1 week post-SE (epileptogenesis) in the hippocampus. Pericyte modifications topographically overlapped with IBA1+ microglia clustering around the capillaries with cases of pericytes lodged within the microglial cells. Microglial clustering around the NG2DsRed pericytes lingered at SRS. Pericyte proliferation (Ki67+) occurred 72 h post-SE and during epileptogenesis and returned towards control levels at SRS. Human epileptic brain tissues showed pericyte-microglia assemblies with IBA1/HLA microglial cells outlining the capillary wall in TLE-HS and FCD-IIb specimens. Inflammatory mediators contributed to pericyte modifications, in particular IL-1β elicited pericyte morphological changes and pericyte-microglia clustering in NG2DsRed hippocampal slices. Modifications also occurred when pro-inflammatory cytokines were added to an in vitro culture of pericytes. CONCLUSIONS These results indicate the occurrence of pericytosis during seizures and introduce a pericyte-microglial mediated mechanism of blood-brain barrier dysfunction in epilepsy.


Cellular and Molecular Life Sciences | 2017

Retinoic acid maintains human skeletal muscle progenitor cells in an immature state

Marina El Haddad; Cécile Notarnicola; Brendan Evano; Nour El Khatib; Marine Blaquière; Anne Bonnieu; Shahragim Tajbakhsh; Gérald Hugon; Barbara Vernus; Jacques Mercier; Gilles Carnac

Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.


Journal of Cellular Physiology | 2018

Oxidative stress regulates autophagy in cultured muscle cells of patients with chronic obstructive pulmonary disease: GOUZI et al.

Fares Gouzi; Marine Blaquière; Matthias Catteau; François Bughin; Jonathan Maury; Emilie Passerieux; Bronia Ayoub; Jacques Mercier; Maurice Hayot; Pascal Pomiès

The proteolytic autophagy pathway is enhanced in the lower limb muscles of patients with chronic obstructive pulmonary disease (COPD). Reactive oxygen species (ROS) have been shown to regulate autophagy in the skeletal muscles, but the role of oxidative stress in the muscle autophagy of patients with COPD is unknown. We used cultured myoblasts and myotubes from the quadriceps of eight healthy subjects and twelve patients with COPD (FEV1% predicted: 102.0% and 32.0%, respectively; p < 0.0001). We compared the autophagosome formation, the expression of autophagy markers, and the autophagic flux in healthy subjects and the patients with COPD, and we evaluated the effects of the 3‐methyladenine (3‐MA) autophagy inhibitor on the atrophy of COPD myotubes. Autophagy was also assessed in COPD myotubes treated with an antioxidant molecule, ascorbic acid. Autophagosome formation was increased in COPD myoblasts and myotubes (p = 0.011; p < 0.001), and the LC3 2/LC3 1 ratio (p = 0.002), SQSTM1 mRNA and protein expression (p = 0.023; p = 0.007), BNIP3 expression (p = 0.031), and autophagic flux (p = 0.002) were higher in COPD myoblasts. Inhibition of autophagy with 3‐MA increased the COPD myotube diameter (p < 0.001) to a level similar to the diameter of healthy subject myotubes. Treatment of COPD myotubes with ascorbic acid decreased ROS concentration (p < 0.001), ROS‐induced protein carbonylation (p = 0.019), the LC3 2/LC3 1 ratio (p = 0.037), the expression of SQSTM1 (p < 0.001) and BNIP3 (p < 0.001), and increased the COPD myotube diameter (p < 0.001). Thus, autophagy signaling is enhanced in cultured COPD muscle cells. Furthermore, the oxidative stress level contributes to the regulation of autophagy, which is involved in the atrophy of COPD myotubes in vitro.


BMC Biology | 2018

Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress

Florian A. Britto; Fabienne Cortade; Yassine Belloum; Marine Blaquière; Yann S. Gallot; Aurélie Docquier; Allan F. Pagano; Elodie Jublanc; Nadia Bendridi; Christelle Koechlin-Ramonatxo; Béatrice Chabi; Marc Francaux; François Casas; Damien Freyssenet; Jennifer Rieusset; Sophie Giorgetti-Peraldi; Gilles Carnac; Vincent Ollendorff; François B. Favier

BackgroundSkeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses.ResultsUnexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O2 and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise.ConclusionsTherefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson’s disease.


International Journal of Chronic Obstructive Pulmonary Disease | 2016

Impaired training-induced adaptation of blood pressure in COPD patients: implication of the muscle capillary bed

Fares Gouzi; Jonathan Maury; François Bughin; Marine Blaquière; Bronia Ayoub; Jacques Mercier; Antonia Perez-Martin; Pascal Pomiès; Maurice Hayot

Background and aims Targeting the early mechanisms in exercise-induced arterial hypertension (which precedes resting arterial hypertension in its natural history) may improve cardiovascular morbidity and mortality in COPD patients. Capillary rarefaction, an early event in COPD before vascular remodeling, is a potential mechanism of exercise-induced and resting arterial hypertension. Impaired training-induced capillarization was observed earlier in COPD patients; thus, this study compares the changes in blood pressure (BP) during exercise in COPD patients and matches control subjects (CSs) after a similar exercise training program, in relationship with muscle capillarization. Methods Resting and maximal exercise diastolic pressure (DP) and systolic pressure (SP) were recorded during a standardized cardiopulmonary exercise test, and a quadriceps muscle biopsy was performed before and after training. Results A total of 35 CSs and 49 COPD patients (forced expiratory volume in 1 second =54%±22% predicted) completed a 6-week rehabilitation program and improved their symptom-limited maximal oxygen uptake (VO2SL: 25.8±6.1 mL/kg per minute vs 27.9 mL/kg per minute and 17.0±4.7 mL/kg per minute vs 18.3 mL/kg per minute; both P<0.001). The improvement in muscle capillary-to-fiber (C/F) ratio was significantly greater in CSs vs COPD patients (+11%±9% vs +23%±21%; P<0.05). Although maximal exercise BP was reduced in CSs (DP: 89±10 mmHg vs 85±9 mmHg; P<0.001/SP: 204±25 mmHg vs 196±27 mmHg; P<0.05), it did not change in COPD patients (DP: 94±14 mmHg vs 97±16 mmHg; P=0.46/SP: 202±27 mmHg vs 208±24 mmHg; P=0.13). The change in muscle C/F ratio was negatively correlated with maximal exercise SP in CSs and COPD patients (r=−0.41; P=0.02). Conclusion COPD patients showed impaired training-induced BP adaptation related to a change in muscle capillarization, suggesting the possibility of blunted angiogenesis.


Revue Des Maladies Respiratoires | 2018

Défaut de couverture péricytaire capillaire au cours de l’angiogenèse musculaire induite par le réentraînement à l’effort chez le patient BPCO

L. Blervaque; Pascal Pomiès; Matthias Catteau; Emilie Passerieux; Bronia Ayoub; Marine Blaquière; L. Ducros; François Bughin; Nicolas Molinari; Jacques Mercier; Maurice Hayot; Fares Gouzi


Revue Des Maladies Respiratoires | 2017

Optimisation des effets de la réhabilitation respiratoire chez des patients BPCO par une supplémentation en antioxydants : résultats d’essai randomisé contrôlé en double insu

Jonathan Maury; Nelly Heraud; Fares Gouzi; P. De Rigal; Nicolas Molinari; Joël Pincemail; Dalila Laoudj-Chenivesse; F. Bughin; Magali Poulain; Marine Blaquière; Jacques Mercier; Christian Préfaut; Pascal Pomiès; Maurice Hayot


European Respiratory Journal | 2017

The COPD plasmatic microenvironment induces atrophy of healthy human myotubes in vitro

Pascal Pomiès; Matthias Catteau; Marine Blaquière; Fares Gouzi; Jonathan Maury; Bronia Ayoub; Jacques Mercier; Maurice Hayot

Collaboration


Dive into the Marine Blaquière's collaboration.

Top Co-Authors

Avatar

Fares Gouzi

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Maurice Hayot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Pascal Pomiès

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Jacques Mercier

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Jonathan Maury

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bronia Ayoub

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Bughin

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Gilles Carnac

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge