Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marino DiFranco is active.

Publication


Featured researches published by Marino DiFranco.


The Journal of Physiology | 2004

The action potential‐evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres

Christopher E. Woods; David Novo; Marino DiFranco; Julio L. Vergara

The mdx mouse, a model of the human disease Duchenne muscular dystrophy, has skeletal muscle fibres which display incompletely understood impaired contractile function. We explored the possibility that action potential‐evoked Ca2+ release is altered in mdx fibres. Action potential‐evoked Ca2+‐dependent fluorescence transients were recorded, using both low and high affinity Ca2+ indicators, from enzymatically isolated fibres obtained from extensor digitorum longus (EDL) and flexor digitorum brevis (FDB) muscles of normal and mdx mice. Fibres were immobilized using either intracellular EGTA or N‐benzyl‐p‐toluene sulphonamide, an inhibitor of the myosin II ATPase. We found that the amplitude of the action potential‐evoked Ca2+ transients was significantly decreased in mdx mice with no measured difference in that of the surface action potential. In addition, Ca2+ transients recorded from mdx fibres in the absence of EGTA also displayed a marked prolongation of the slow decay phase. Model simulations of the action potential‐evoked transients in the presence of high EGTA concentrations suggest that the reduction in the evoked sarcoplasmic reticulum Ca2+ release flux is responsible for the decrease in the peak of the Ca2+ transient in mdx fibres. Since the myoplasmic Ca2+ concentration is a critical regulator of muscle contraction, these results may help to explain the weakness observed in skeletal muscle fibres from mdx mice and, possibly, Duchenne muscular dystrophy patients.


Journal of Visualized Experiments | 2009

DNA Transfection of Mammalian Skeletal Muscles using In Vivo Electroporation

Marino DiFranco; Marbella Quinonez; Joana Capote; Julio L. Vergara

A growing interest in cell biology is to express transgenically modified forms of essential proteins (e.g. fluorescently tagged constructs and/or mutant variants) in order to investigate their endogenous distribution and functional relevance. An interesting approach that has been implemented to fulfill this objective in fully differentiated cells is the in vivo transfection of plasmids by various methods into specific tissues such as liver, skeletal muscle, and even the brain. We present here a detailed description of the steps that must be followed in order to efficiently transfect genetic material into fibers of the flexor digitorum brevis (FDB) and interosseus (IO) muscles of adult mice using an in vivo electroporation approach. The experimental parameters have been optimized so as to maximize the number of muscle fibers transfected while minimizing tissue damages that may impair the quality and quantity of the proteins expressed in individual fibers. We have verified that the implementation of the methodology described in this paper results in a high yield of soluble proteins, i.e. EGFP and ECFP, calpain, FKBP12, beta2a-DHPR, etc. ; structural proteins, i.e. minidystrophin and alpha-actinin; and membrane proteins, i.e. alpha1s-DHPR, RyR1, cardiac Na/Ca(2+) exchanger , NaV1.4 Na channel, SERCA1, etc., when applied to FDB, IO and other muscles of mice and rats. The efficient expression of some of these proteins has been verified with biochemical and functional evidence. However, by far the most common confirmatory approach used by us are standard fluorescent microscopy and 2-photon laser scanning microscopy (TPLSM), which permit to identify not only the overall expression, but also the detailed intracellular localization, of fluorescently tagged protein constructs. The method could be equally used to transfect plasmids encoding for the expression of proteins of physiological relevance (as shown here), or for interference RNA (siRNA) aiming to suppress the expression of normally expressed proteins (not tested by us yet). It should be noted that the transfection of FDB and IO muscle fibers is particularly relevant for the investigation of mammalian muscle physiology since fibers enzymatically dissociated from these muscles are currently one of the most suitable models to investigate basic mechanisms of excitability and excitation-contraction coupling under current or voltage clamp conditions.


The Journal of Physiology | 2005

Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres

Christopher E. Woods; David Novo; Marino DiFranco; Joana Capote; Julio L. Vergara

Using a two‐microelectrode voltage clamp technique, we investigated possible mechanisms underlying the impaired excitation–contraction coupling in skeletal muscle fibres of the mdx mouse, a model of the human disease Duchenne muscular dystrophy. We evaluated the role of the transverse tubular system (T‐system) by using the potentiometric indicator di‐8 ANEPPS, and that of the sarcoplasmic reticulum (SR) Ca2+ release by measuring Ca2+ transients with a low affinity indicator in the presence of high EGTA concentrations under voltage clamp conditions. We observed minimal differences in the T‐system structure and the T‐system electrical propagation was not different between normal and mdx mice. Whereas the maximum Ca2+ release elicited by voltage pulses was reduced by ∼67% in mdx fibres, in agreement with previous results obtained using AP stimulation, the voltage dependence of SR Ca2+ release was identical to that seen in normal fibres. Taken together, our data suggest that the intrinsic ability of the sarcoplasmic reticulum to release Ca2+ may be altered in the mdx mouse.


The Journal of Membrane Biology | 2005

Optical Imaging and Functional Characterization of the Transverse Tubular System of Mammalian Muscle Fibers using the Potentiometric Indicator di-8-ANEPPS

Marino DiFranco; Joana Capote; Julio L. Vergara

Potentiometric dyes are useful tools for studying membrane potential changes from compartments inaccessible to direct electrical recordings. In the past, we have combined electrophysiological and optical techniques to investigate, by using absorbance and fluorescence potentiometric dyes, the electrical properties of the transverse tubular system in amphibian skeletal muscle fibers. In this paper we expand on recent observations using the fluorescent potentiometric indicator di-8-ANEPPS to investigate structural and functional properties of the transverse tubular system in mammalian skeletal muscle fibers. Two-photon laser scanning confocal fluorescence images of live muscle fibers suggest that the distance between consecutive rows of transverse tubules flanking the Z-lines remains relatively constant in muscle fibers stretched to attain sarcomere lengths of up to 3.5 μm. Furthermore, the combined use of two-microelectrode electrophysiological techniques with microscopic fluorescence spectroscopy and imaging allowed us to compare the spectral properties of di-8-ANEPPS fluorescence in fibers at rest, with those of fluorescence transients recorded in stimulated fibers. We found that although the indicator has excitation and emission peaks at 470 and 588 nm, respectively, fluorescence transients display optimal fractional changes (13%/100 mV) when using filters to select excitation wavelengths in the 530–550 nm band and emissions beyond 590 nm. Under these conditions, results from tetanically stimulated fibers and from voltage-clamp experiments suggest strongly that, although the kinetics of di-8-ANEPPS transients in mammalian fibers are very rapid and approximate those of the surface membrane electrical recordings, they arise from the transverse tubular system membranes.


The Journal of General Physiology | 2007

Voltage-dependent Dynamic FRET Signals from the Transverse Tubules in Mammalian Skeletal Muscle Fibers

Marino DiFranco; Joana Capote; Marbella Quinonez; Julio L. Vergara

Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC4(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC4(5). The peak ΔF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC4(5) exhibit ΔF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.


Biophysical Journal | 1991

Imaging of calcium transients in skeletal muscle fibers.

Julio L. Vergara; Marino DiFranco; D. Compagnon; B.A. Suarez-Isla

Epifluorescence images of Ca2+ transients elicited by electrical stimulation of single skeletal muscle fibers were studied with fast imaging techniques that take advantage of the large fluorescence signals emitted at relatively long wavelengths by the dyes fluo-3 and rhod-2 in response to binding of Ca2+ ions, and of the suitable features of a commercially available CCD video camera. The localized release of Ca2+ in response to microinjection of InsP3 was also monitored to demonstrate the adequate space and time resolutions of the imaging system. The time resolution of the imager system, although limited to the standard video frequency response, still proved to be adequate to investigate the fast Ca2+ release process in skeletal muscle fibers at low temperatures.


American Journal of Physiology-cell Physiology | 2010

Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study

Joana Capote; Marino DiFranco; Julio L. Vergara

The double knockout mouse for utrophin and dystrophin (utr(-/-)/mdx) has been proposed to be a better model of Duchenne Muscular Dystrophy (DMD) than the mdx mouse because the former displays more similar muscle pathology to that of the DMD patients. In this paper the properties of action potentials (APs) and Ca(2+) transients elicited by single and repetitive stimulation were studied to understand the excitation-contraction (EC) coupling alterations observed in muscle fibers from mdx and utr(-/-)/mdx mice. Based on the comparison of the AP durations with those of fibers from wild-type (WT) mice, fibers from both mdx and utr(-/-)/mdx mice could be divided in two groups: fibers with WT-like APs (group 1) and fibers with significantly longer APs (group 2). Although the proportion of fibers in group 2 was larger in utr(-/-)/mdx (36%) than in mdx mice (27%), the Ca(2+) release elicited by single stimulation was found to be similarly depressed (32-38%) in utr(-/-)/mdx and mdx fibers compared with WT counterparts regardless of the fibers group. Stimulation at 100 Hz revealed that, with the exception of those from utr(-/-)/mdx mice, group 1 fibers were able to sustain Ca(2+) release for longer than group 2 fibers, which displayed an abrupt limitation even at the onset of the train. The differences in behavior between fibers in groups 1 and 2 became almost unnoticeable at 50 Hz stimulation. In general, fibers from utr(-/-)/mdx mice seem to display more persistent alterations in the EC coupling than those observed in the mdx model.


The Journal of General Physiology | 2011

Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers

Marino DiFranco; Alvaro Herrera; Julio L. Vergara

Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (ICl) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward ICl, and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and ICl acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be ICl dependent since its magnitude varied in close correlation with the amplitude and time course of ICl. While the properties of ICl, and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (PCl) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if PCl was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded ICl arises from TTS contributions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains

Marino DiFranco; Christopher E. Woods; Joana Capote; Julio L. Vergara

The spatiotemporal properties of the Ca2+-release process in skeletal muscle fibers from normal and mdx fibers were determined using the confocal-spot detection technique. The Ca2+ indicator OGB-5N was used to record action potential-evoked fluorescence signals at consecutive locations separated by 200 nm along multiple sarcomeres of FDB fibers loaded with 10- and 30-mM EGTA. Three-dimensional reconstructions of fluorescence transients demonstrated the existence of microdomains of increased fluorescence around the Ca2+-release sites in both mouse strains. The Ca2+ microdomains in mdx fibers were regularly spaced along the fiber axis, displaying a distribution similar to that seen in normal fibers. Nevertheless, both preparations differed in that in 10-mM EGTA Ca2+ microdomains had smaller amplitudes and were wider in mdx fibers than in controls. In addition, Ca2+-dependent fluorescence transients recorded at selected locations within the sarcomere of mdx muscle fibers were not only smaller, but also slower than their counterparts in normal fibers. Notably, differences in the spatial features of the Ca2+ microdomains recorded in mdx and normal fibers, but not in the amplitude and kinetics of the Ca2+ transients, were eliminated in 30-mM EGTA. Our results consistently demonstrate that Ca2+-release flux calculated from release sites in mdx fibers is uniformly impaired with respect to those normal fibers. The Ca2+-release reduction is consistent with that previously measured using global detection techniques.


The Journal of General Physiology | 2015

Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+.

Marino DiFranco; Hesamedin Hakimjavadi; Jerry B. Lingrel; Judith A. Heiny

The K+ affinity of the Na,K-ATPase α2 isoform matches its activity to the range of extracellular K+ concentrations in the T-tubules at rest and during contraction, maintaining the excitability of active muscle.

Collaboration


Dive into the Marino DiFranco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joana Capote

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Yu

University of California

View shared research outputs
Top Co-Authors

Avatar

David Novo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvaro Herrera

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Neco

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge