Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario A. Acuña is active.

Publication


Featured researches published by Mario A. Acuña.


Nature Communications | 2015

Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype

William T. Ralvenius; Dietmar Benke; Mario A. Acuña; Uwe Rudolph; Hanns Ulrich Zeilhofer

Agonists at the benzodiazepine-binding site of GABAA receptors (BDZs) enhance synaptic inhibition through four subtypes (α1, α2, α3 and α5) of GABAA receptors (GABAAR). When applied to the spinal cord, they alleviate pathological pain; however, insufficient efficacy after systemic administration and undesired effects preclude their use in routine pain therapy. Previous work suggested that subtype-selective drugs might allow separating desired antihyperalgesia from unwanted effects, but the lack of selective agents has hitherto prevented systematic analyses. Here we use four lines of triple GABAAR point-mutated mice, which express only one benzodiazepine-sensitive GABAAR subtype at a time, to show that targeting only α2GABAARs achieves strong antihyperalgesia and reduced side effects (that is, no sedation, motor impairment and tolerance development). Additional pharmacokinetic and pharmacodynamic analyses in these mice explain why clinically relevant antihyperalgesia cannot be achieved with nonselective BDZs. These findings should foster the development of innovative subtype-selective BDZs for novel indications such as chronic pain.


Journal of Biological Chemistry | 2013

Endoplasmic Reticulum-associated Degradation Controls Cell Surface Expression of γ-Aminobutyric Acid, Type B Receptors

Khaled Zemoura; Marisa Schenkel; Mario A. Acuña; Gonzalo E. Yévenes; Hanns Ulrich Zeilhofer; Dietmar Benke

Background: The amount of cell surface GABAB receptors determines the strength of GABAB-mediated inhibition of neuronal excitability. Results: GABAB receptors are Lys48-linked polyubiquitinated and degraded by proteasomes via ERAD. Conclusion: ERAD constitutively degrades GABAB receptors and thereby determines the number of functional receptors available for signaling. Significance: Modulation of ERAD activity may be a mechanism to adjust the level of functional GABAB receptors. Metabotropic GABAB receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. Although the mechanisms of GABAB receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABAB receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABAB receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABAB receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required Lys48-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABAB2 subunit. Inactivation of these ubiquitination sites increased receptor levels and GABAB receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum-associated degradation (ERAD) as shown by the accumulation of receptors in the endoplasmic reticulum upon inhibition of proteasomes, by the increase of receptor levels, as well as receptor signaling upon blocking ERAD function, and by the interaction of GABAB receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABAB receptors available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.


Journal of Biological Chemistry | 2014

Ischemia-like Oxygen and Glucose Deprivation Mediates Down-regulation of Cell Surface γ-Aminobutyric AcidB Receptors via the Endoplasmic Reticulum (ER) Stress-induced Transcription Factor CCAAT/Enhancer-binding Protein (C/EBP)-homologous Protein (CHOP)

Patrick J. Maier; Khaled Zemoura; Mario A. Acuña; Gonzalo E. Yévenes; Hanns Ulrich Zeilhofer; Dietmar Benke

Background: ER stress associated with cerebral ischemia induces the expression of the transcription factor CHOP. Results: Interaction with CHOP down-regulates cell surface GABAB receptors and, thus, GABAB receptor-mediated neuronal inhibition. Conclusion: Interaction of CHOP with GABAB receptors in the ER prevents forward trafficking of the receptors. Significance: This mechanism is expected to contribute to excitotoxicity in cerebral ischemia. Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABAB receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CCAAT/enhancer-binding protein-homologous protein (CHOP). After inducing ER stress in cultured cortical neurons by sustained Ca2+ release from intracellular stores or by a brief episode of oxygen and glucose deprivation (in vitro model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABAB receptors. Our results indicate that down-regulation of cell surface GABAB receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABAB1 and GABAB2 and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABAB receptor signaling and, thus, neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia.


Advances in pharmacology | 2015

Chapter Four – Restoring the Spinal Pain Gate: GABAA Receptors as Targets for Novel Analgesics

Hanns Ulrich Zeilhofer; William T. Ralvenius; Mario A. Acuña

GABAA receptors (GABA(A)Rs) and glycine receptors are key elements of the spinal control of nociception and pain. Compromised functioning of these two transmitter systems contributes to chronic pain states. Restoring their proper function through positive allosteric modulators should constitute a rational approach to the treatment of chronic pain syndromes involving diminished inhibitory spinal pain control. Although classical benzodiazepines (i.e., full agonists at the benzodiazepine binding site of GABA(A)Rs) potentiate synaptic inhibition in spinal pain controlling circuits, they lack clinically relevant analgesic activity in humans. Recent data obtained from experiments in GABA(A)R point-mutated mice suggests dose-limiting sedative effects of classical nonspecific benzodiazepines as the underlying cause. Experiments in genetically engineered mice resistant to the sedative effects of classical benzodiazepines and studies with novel less sedating benzodiazepines have indeed shown that profound antihyperalgesia can be obtained at least in preclinical pain models. Present evidence suggests that compounds with high intrinsic activity at α2-GABA(A)R and minimal agonistic activity at α1-GABA(A)R should possess relevant antihyperalgesic activity without causing unwanted sedation. On-going preclinical studies in genetically engineered mice and clinical trials with more selective benzodiazepine site agonists should soon provide additional insights into this emerging topic.


Advances in pharmacology (San Diego) | 2015

Restoring the spinal pain gate: GABA(A) receptors as targets for novel analgesics.

Hanns Ulrich Zeilhofer; William T. Ralvenius; Mario A. Acuña

GABAA receptors (GABA(A)Rs) and glycine receptors are key elements of the spinal control of nociception and pain. Compromised functioning of these two transmitter systems contributes to chronic pain states. Restoring their proper function through positive allosteric modulators should constitute a rational approach to the treatment of chronic pain syndromes involving diminished inhibitory spinal pain control. Although classical benzodiazepines (i.e., full agonists at the benzodiazepine binding site of GABA(A)Rs) potentiate synaptic inhibition in spinal pain controlling circuits, they lack clinically relevant analgesic activity in humans. Recent data obtained from experiments in GABA(A)R point-mutated mice suggests dose-limiting sedative effects of classical nonspecific benzodiazepines as the underlying cause. Experiments in genetically engineered mice resistant to the sedative effects of classical benzodiazepines and studies with novel less sedating benzodiazepines have indeed shown that profound antihyperalgesia can be obtained at least in preclinical pain models. Present evidence suggests that compounds with high intrinsic activity at α2-GABA(A)R and minimal agonistic activity at α1-GABA(A)R should possess relevant antihyperalgesic activity without causing unwanted sedation. On-going preclinical studies in genetically engineered mice and clinical trials with more selective benzodiazepine site agonists should soon provide additional insights into this emerging topic.


Journal of Clinical Investigation | 2016

Phosphorylation state–dependent modulation of spinal glycine receptors alleviates inflammatory pain

Mario A. Acuña; Gonzalo E. Yévenes; William T. Ralvenius; Dietmar Benke; Alessandra Di Lio; Cesar O. Lara; Braulio Muñoz; Carlos F. Burgos; Gustavo Moraga-Cid; Pierre-Jean Corringer; Hanns Ulrich Zeilhofer

Diminished inhibitory neurotransmission in the superficial dorsal horn of the spinal cord is thought to contribute to chronic pain. In inflammatory pain, reductions in synaptic inhibition occur partially through prostaglandin E2- (PGE2-) and PKA-dependent phosphorylation of a specific subtype of glycine receptors (GlyRs) that contain α3 subunits. Here, we demonstrated that 2,6-di-tert-butylphenol (2,6-DTBP), a nonanesthetic propofol derivative, reverses inflammation-mediated disinhibition through a specific interaction with heteromeric αβGlyRs containing phosphorylated α3 subunits. We expressed mutant GlyRs in HEK293T cells, and electrophysiological analyses of these receptors showed that 2,6-DTBP interacted with a conserved phenylalanine residue in the membrane-associated stretch between transmembrane regions 3 and 4 of the GlyR α3 subunit. In native murine spinal cord tissue, 2,6-DTBP modulated synaptic, presumably αβ heteromeric, GlyRs only after priming with PGE2. This observation is consistent with results obtained from molecular modeling of the α-β subunit interface and suggests that in α3βGlyRs, the binding site is accessible to 2,6-DTBP only after PKA-dependent phosphorylation. In murine models of inflammatory pain, 2,6-DTBP reduced inflammatory hyperalgesia in an α3GlyR-dependent manner. Together, our data thus establish that selective potentiation of GlyR function is a promising strategy against chronic inflammatory pain and that, to our knowledge, 2,6-DTBP has a unique pharmacological profile that favors an interaction with GlyRs that have been primed by peripheral inflammation.


Nature Communications | 2016

Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission.

Himanish Ghosh; Luca Auguadri; Sereina Battaglia; Zahra Simone Thirouin; Khaled Zemoura; Simon Messner; Mario A. Acuña; Hendrik Wildner; Gonzalo E. Yévenes; Andrea Dieter; Hiroshi Kawasaki; Michael O. Hottiger; Hanns Ulrich Zeilhofer; Jean-Marc Fritschy; Shiva K. Tyagarajan

GABAA receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the brain via synergistic association with the postsynaptic scaffolding protein gephyrin and its interaction partners. However, unlike their counterparts at glutamatergic synapses, gephyrin and its binding partners lack canonical protein interaction motifs; hence, the molecular basis for gephyrin scaffolding has remained unclear. In this study, we identify and characterize two new posttranslational modifications of gephyrin, SUMOylation and acetylation. We demonstrate that crosstalk between SUMOylation, acetylation and phosphorylation pathways regulates gephyrin scaffolding. Pharmacological intervention of SUMO pathway or transgenic expression of SUMOylation-deficient gephyrin variants rescued gephyrin clustering in CA1 or neocortical neurons of Gabra2-null mice, which otherwise lack gephyrin clusters, indicating that gephyrin SUMO modification is an essential determinant for scaffolding at GABAergic synapses. Together, our results demonstrate that concerted modifications on a protein scaffold by evolutionarily conserved yet functionally diverse signalling pathways facilitate GABAergic transmission.


Cellular and Molecular Life Sciences | 2018

Glycine receptors and glycine transporters: targets for novel analgesics?

Hanns Ulrich Zeilhofer; Mario A. Acuña; Jacinthe Gingras; Gonzalo E. Yévenes

Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized—among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.


Neuropharmacology | 2016

The clobazam metabolite N-desmethyl clobazam is an α2 preferring benzodiazepine with an improved therapeutic window for antihyperalgesia

William T. Ralvenius; Mario A. Acuña; Dietmar Benke; Alain Matthey; Youssef Daali; Uwe Rudolph; Jules Alexandre Desmeules; Hanns Ulrich Zeilhofer; Marie Besson

Data from genetically modified mice suggest that benzodiazepine (BDZ)-site agonists with improved selectivity for α2-subtype GABAA receptors (α2GABAAR) are potentially useful for the treatment of neuropathic pain. Subtype-selective compounds available for preclinical tests in rodents support this concept but have not been approved for human use, hindering proof-of-concept studies in patients. We recently proposed that N-desmethyl clobazam (NDMC), the main metabolite of the licensed BDZ clobazam (CBZ), is responsible for most of the antihyperalgesia observed in mice after CBZ administration. In order to assess a potentially favorable pharmacological profile of NDMC, we analyzed differences in the GABAAR subtype specificity of CBZ, NDMC and diazepam (DZP) in recombinant receptors. DZP and CBZ potentiated sedating α1GABAARs and antihyperalgesic α2GABAARs with similar efficacies, whereas NDMC preferred α2GABAARs over α1GABAARs across a wide concentration range. In vivo, DZP and NDMC reduced neuropathic pain at doses between 3 and 30 mg/kg. At these doses, DZP had strong locomotor sedating effects while NDMC caused no or only weak sedation. Sedative effects of NDMC became apparent when the action of NDMC was restricted to α1GABAARs. However, when GABAAR point-mutated mice were studied that allow the analysis of antihyperalgesia and sedation in isolation, we found that, compared to DZP, NDMC had a significantly improved therapeutic window, consistent with its more favorable α2/α1 in vitro activity ratio. Given that NDMC should share the safety profile of its parent compound CBZ, it should be well-suited for proof-of-concept studies in human volunteers or patients.


Bioscience Reports | 2016

Effects of N-Glycosylation of the human cation channel TRPA1 on agonist-sensitivity

Timothy James Egan; Mario A. Acuña; Marcy Zenobi-Wong; Hanns Ulrich Zeilhofer; David Urech

Our experiments confirm N-glycosylation of the human cation channel TRPA1 and suggest a role of the N-glycan at position Asn747 in determining channel sensitivity to various agonists. Further, the activity-modulating effects of TRPA1 N-glycans are evidently influenced by temperature.

Collaboration


Dive into the Mario A. Acuña's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge