Mario A. Monteiro
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario A. Monteiro.
Journal of Pharmacology and Experimental Therapeutics | 2008
Elizabeth L. Adams; Peter J. Rice; Bridget M. Graves; Harry E. Ensley; Hai Yu; Gordon D. Brown; Siamon Gordon; Mario A. Monteiro; Erzsebet Papp-Szabo; Douglas W. Lowman; Trevor D. Power; Michael F. Wempe; David L. Williams
Glucans are structurally diverse fungal biopolymers that stimulate innate immunity and are fungal pathogen-associated molecular patterns. Dectin-1 is a C-type lectin-like pattern recognition receptor that binds glucans and induces innate immune responses to fungal pathogens. We examined the effect of glucan structure on recognition and binding by murine recombinant Dectin-1 with a library of natural product and synthetic (1→3)-β/(1→6)-β-glucans as well as nonglucan polymers. Dectin-1 is highly specific for glucans with a pure (1→3)-β-linked backbone structure. Although Dectin-1 is highly specific for (1→3)-β-d-glucans, it does not recognize all glucans equally. Dectin-1 differentially interacted with (1→3)-β-d-glucans over a very wide range of binding affinities (2.6 mM–2.2 pM). One of the most striking observations that emerged from this study was the remarkable high-affinity interaction of Dectin-1 with certain glucans (2.2 pM). These data also demonstrated that synthetic glucan ligands interact with Dectin-1 and that binding affinity increased in synthetic glucans containing a single glucose side-chain branch. We also observed differential recognition of glucans derived from saprophytes and pathogens. We found that glucan derived from a saprophytic yeast was recognized with higher affinity than glucan derived from the pathogen Candida albicans. Structural analysis demonstrated that glucan backbone chain length and (1→6)-β side-chain branching strongly influenced Dectin-1 binding affinity. These data demonstrate: 1) the specificity of Dectin-1 for glucans; 2) that Dectin-1 differentiates between glucan ligands based on structural determinants; and 3) that Dectin-1 can recognize and interact with both natural product and synthetic glucan ligands.
Frontiers in Cellular and Infection Microbiology | 2012
Patricia Guerry; Frédéric Poly; Mark S. Riddle; Alexander C. Maue; Yu-Han Chen; Mario A. Monteiro
Campylobacter jejuni remains a major cause of bacterial diarrhea worldwide and is associated with numerous sequelae, including Guillain Barré Syndrome, inflammatory bowel disease, reactive arthritis, and irritable bowel syndrome. C. jejuni is unusual for an intestinal pathogen in its ability to coat its surface with a polysaccharide capsule (CPS). These capsular polysaccharides vary in sugar composition and linkage, especially those involving heptoses of unusual configuration and O-methyl phosphoramidate linkages. This structural diversity is consistent with CPS being the major serodeterminant of the Penner scheme, of which there are 47 C. jejuni serotypes. Both CPS expression and expression of modifications are subject to phase variation by slip strand mismatch repair. Although capsules are virulence factors for other pathogens, the role of CPS in C. jejuni disease has not been well defined beyond descriptive studies demonstrating a role in serum resistance and for diarrhea in a ferret model of disease. However, perhaps the most compelling evidence for a role in pathogenesis are data that CPS conjugate vaccines protect against diarrheal disease in non-human primates. A CPS conjugate vaccine approach against this pathogen is intriguing, but several questions need to be addressed, including the valency of CPS types required for an effective vaccine. There have been numerous studies of prevalence of CPS serotypes in the developed world, but few studies from developing countries where the disease incidence is higher. The complexity and cost of Penner serotyping has limited its usefulness, and a recently developed multiplex PCR method for determination of capsule type offers the potential of a more rapid and affordable method. Comparative studies have shown a strong correlation of the two methods and studies are beginning to ascertain CPS-type distribution worldwide, as well as examination of correlation of severity of illness with specific CPS types.
Carbohydrate Research | 2008
Jeyabarathy Ganeshapillai; Evguenii Vinogradov; Joyce Rousseau; J. Scott Weese; Mario A. Monteiro
Clostridium difficile is a Gram-positive bacterium that is known to be a cause of enteric diseases in humans. It is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis. Recently, large outbreaks of C. difficile-associated diarrhea have been reported internationally, and there have been reports of increases in severe disease, mortality and relapse rates. At the moment, there is no vaccine against C. difficile, and the medical prevention of C. difficile infection is mostly based on the prophylactic use of antibiotics; however, this has led to an increase in the incidence of the disease. Here, we describe the chemical structure of C. difficile cell-surface polysaccharides. The polysaccharides of three C. difficile strains were structurally analyzed; ribotype 027 (North American pulsotype 1) strain was observed to express two polysaccharides, one was composed of a branched pentaglycosyl phosphate repeating unit: [-->4)-alpha-l-Rhap-(1-->3)-beta-D-Glcp-(1-->4)-[alpha-l-Rhap-(1-->3]-alpha-D-Glcp-(1-->2)-alpha-D-Glcp-(1-->P] and the other was composed of a hexaglycosyl phosphate repeating unit: [-->6)-beta-D-Glcp-(1-->3)-beta-D-GalpNAc-(1-->4)-alpha-D-Glcp-(1-->4)-[beta-D-Glcp-(1-->]-beta-D-GalpNAc-(1-->3)-alpha-D-Manp-(1-->P]. The latter polysaccharide was also observed to be produced by strains MOH900 and MOH718. The results described here represent the first literature report describing the covalent chemical structures of C. difficile cell-surface polysaccharides, of which PS-II appears to be a regular C. difficile antigen. These C. difficile teichoic-acid-like polysaccharides will be tested as immunogens in vaccine preparations in a rat and horse model.
Journal of Biological Chemistry | 2014
Douglas W. Lowman; Rachel R. Greene; Daniel W. Bearden; Michael D. Kruppa; Max Pottier; Mario A. Monteiro; D. V. Soldatov; Harry E. Ensley; Shih-Chin Cheng; Mihai G. Netea; David L. Williams
Background: The human innate immune system can discriminate between Candida albicans yeast and hyphal forms. Results: C. albicans hyphae possess glucan structures that are unique to the hyphae and are not found in yeast. Conclusion: Hyphal glucan elicits robust immune responses. Significance: These data provide a structural basis for differential immune recognition of C. albicans yeast versus hyphae. The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. 1H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or “closed chain” structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae.
Journal of Bacteriology | 2006
Margaret I. Kanipes; Erzsebet Papp-Szabo; Patricia Guerry; Mario A. Monteiro
Campylobacter jejuni 81-176 lipooligosaccharide (LOS) is composed of two covalently linked domains: lipid A, a hydrophobic anchor, and a nonrepeating core oligosaccharide, consisting of an inner and outer core region. We report the isolation and characterization of the deepest rough C. jejuni 81-176 mutant by insertional mutagenesis into the waaC gene, encoding heptosyltransferase I that catalyzes the transfer of the first L-glycero-D-manno-heptose residue to 3-deoxy-D-manno-octulosonic residue (Kdo)-lipid A. Tricine gel electrophoresis, followed by silver staining, showed that site-specific mutation in the waaC gene resulted in the expression of a severely truncated LOS compared to wild-type strain 81-176. Gas-liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy showed that the waaC LOS species lacked all sugars distal to Kdo-lipid A. Parallel structural studies of the capsular polysaccharides of the wild-type strain 81-176 and waaC mutant revealed loss of the 3-O-methyl group in the waaC mutant. Complementation of the C. jejuni mutant by insertion of the wild-type C. jejuni waaC gene into a chromosomal locus resulted in LOS and capsular structures identical to those expressed in the parent strain. We also report here the presence of O-methyl phosphoramidate in wild-type strain 81-176 capsular polysaccharide.
Infection and Immunity | 2013
Alexander C. Maue; Krystle L. Mohawk; David K. Giles; Frédéric Poly; Cheryl P. Ewing; Yuening Jiao; Ginyoung Lee; Zuchao Ma; Mario A. Monteiro; Christina L. Hill; Jason S. Ferderber; Chad K. Porter; M. Stephen Trent; Patricia Guerry
ABSTRACT Campylobacter jejuni is a major cause of bacterial diarrheal disease worldwide. The organism is characterized by a diversity of polysaccharide structures, including a polysaccharide capsule. Most C. jejuni capsules are known to be decorated nonstoichiometrically with methyl phosphoramidate (MeOPN). The capsule of C. jejuni 81-176 has been shown to be required for serum resistance, but here we show that an encapsulated mutant lacking the MeOPN modification, an mpnC mutant, was equally as sensitive to serum killing as the nonencapsulated mutant. A nonencapsulated mutant, a kpsM mutant, exhibited significantly reduced colonization compared to that of wild-type 81-176 in a mouse intestinal colonization model, and the mpnC mutant showed an intermediate level of colonization. Both mutants were associated with higher levels of interleukin 17 (IL-17) expression from lamina propria CD4+ cells than from cells from animals infected with 81-176. In addition, reduced levels of Toll-like receptor 4 (TLR4) and TLR2 activation were observed following in vitro stimulation of human reporter cell lines with the kpsM and mpnC mutants compared to those with wild-type 81-176. The data suggest that the capsule polysaccharide of C. jejuni and the MeOPN modification modulate the host immune response.
Vaccine | 2001
May-Lill Garly; Carlitos Balé; Cesario Martins; Mario A. Monteiro; Elishia George; Michael Kidd; Francisco Dias; Peter Aaby; Hilton Whittle
In Guinea-Bissau, children were randomised at 6 months of age to receive either two doses of standard-titre measles vaccine at 6 and 9 months of age or an inactivated polio vaccine at 6 months and standard-titre measles vaccine at 9 months of age. During the first 5 months, children received Edmonston-Zagreb (EZ) vaccine and during the following 11 months, the Schwarz (SW) vaccine. Five percent of the mothers, 74% of children at 6 months of age, and 92% of unvaccinated children at 9 months of age had unprotective levels (<125 mIU/ml) of measles antibodies. Among children receiving EZ vaccine, 1% were unprotected at 18 months of age after either two (3/240) or one (3/211) doses of vaccine, the geometric mean measles antibody titre (GMT) being approximately 1550 mIU/ml in both groups. Among those receiving SW vaccine 9% (34/365) and 3% (9/310) were unprotected at 18 months of age in the two-dose and the one-dose groups (RR = 3.21 (95% confidence interval (CI) 1.56-6.58)), respectively. The GMT was higher after one dose of SW vaccine at 9 months of age (2491 mIU/ml) than after two doses of SW vaccine (1125 mIU) (P < 0.001). In the EZ vaccine group, there was no significant difference in antibody level for children vaccinated in the presence of high or low levels of maternal antibodies, whereas there was a marked difference in the SW group. The second EZ vaccine induced a significant antibody increase between 9 months of age (1191 mIU) and 18 months of age (1602 mIU, P=0.011), whereas antibody levels tended to decline from 9 months (1243 mIU) to 18 months of age (998 mIU, P = 0.124) after the second dose of SW vaccine. Conclusively, after two doses of EZ measles vaccine more children were protected at 18 months of age than after two doses of SW. One dose of SW provided the highest antibody response, but a higher proportion of unprotected than one or two doses of EZ. The EZ vaccine was less sensitive to maternal antibodies, and able to increase the antibody response by revaccination, while the second SW vaccine resulted in an unchanged or lower antibody response.
Expert Review of Vaccines | 2013
Mario A. Monteiro; Zuchao Ma; Lisa Bertolo; Yuening Jiao; Luis G. Arroyo; Douglas C. Hodgins; Michael Mallozzi; Gayatri Vedantam; Martin Sagermann; John Sundsmo; Herbert Chow
Clostridium difficile is responsible for thousands of deaths each year and a vaccine would be welcomed, especially one that would disrupt bacterial maintenance, colonization and persistence in carriers and convalescent patients. Structural explorations at the University of Guelph (ON, Canada) discovered that C. difficile may express three phosphorylated polysaccharides, named PSI, PSII and PSIII; this review captures our recent efforts to create vaccines based on these glycans, especially PSII, the common antigen that has precipitated immediate attention. The authors describe the design and immunogenicity of vaccines composed of raw polysaccharides and conjugates thereof. So far, it has been observed that anti-PSII antibodies can be raised in farm animals, mice and hamster models; humans and horses carry anti-PSII IgA and IgG antibodies from natural exposure to C. difficile, respectively; phosphate is an indispensable immunogenic epitope and vaccine-induced PSII antibodies recognize PSII on C. difficile outer surface.
Carbohydrate Research | 2012
Lisa Bertolo; Alexander G. Boncheff; Zuchao Ma; Yu Han Chen; Robert M. Friendship; Joyce Rosseau; J. Scott Weese; Michele Chu; Michael Mallozzi; Gayatri Vedantam; Mario A. Monteiro
Clostridium difficile is responsible for severe diarrhea in humans that may cause death. Spores are the infectious form of C. difficile, which germinate into toxin-producing vegetative cells in response to bile acids. Recently, we discovered that C. difficile cells possess three complex polysaccharides (PSs), named PSI, PSII, and PSIII, in which PSI was only associated with a hypervirulent ribotype 027 strain, PSII was hypothesized to be a common antigen, and PSIII was a water-insoluble polymer. Here, we show that (i) C. difficile spores contain, at least in part, a D-glucan, (ii) PSI is not a ribotype 027-unique antigen, (iii) common antigen PSII may in part be present as a low molecular weight lipoteichoic acid, (iv) selective hydrolysis of PSII yields single PSII repeat units, (v) the glycosyl diester-phosphate linkage affords high flexibility to PSII, and (vi) that PSII is immunogenic in sows. Also, with the intent of creating a dual anti-diarrheal vaccine against C. difficile and enterotoxin Escherichia coli (ETEC) infections in humans, we describe the conjugation of PSII to the ETEC-associated LTB enterotoxin.
Fungal Genetics and Biology | 2009
Dongmei Li; David L. Williams; Douglas Lowman; Mario A. Monteiro; Xuan Tan; Michael Kruppa; William A. Fonzi; Elvira Román; Jesús Pla; Richard Calderone
Several published functions associated with the CHK1 histidine kinase of Candida albicans resemble those of the MAPK Cek1p and its cognate receptor Sho1p (SSU81). To explore this further, we have compared mutants lacking the proteins mentioned above and have constructed a double sho1/chk1Delta null mutant to determine relationships among these proteins. We observed that the sensitivity to Congo red (CR), calcofluor white (CW), as well as clumping of cells, was slightly increased in the double mutant compared to the single chk1Delta or sho1Delta mutants. However, Cek1p phosphorylation via Sho1p, which occurs during log phase growth in the presence or absence of CR in Wt cells, does not require Chk1p. These data suggest that Chk1p and Sho1p are components of parallel but independent signal pathways. In addition, bulk mannan of strains was analyzed by GLC/MS and GPC MALLS and NMR. Compared to Wt and a CHK1 gene-reconstituted strain (CHK23) that contained high, intermediate and low Mw mannan species, we found that the mannan of strains CHK21 (chk1Delta null), the cek1Delta null, and the double mutant consisted only of low Mw mannan. The sho1Delta null mutant only demonstrated a reduced intermediate type of mannan. Alcian blue binding was lower in cek1Delta, chk1Delta, and the double sho1/chk1Delta null mutant lacking high and intermediate Mw mannan than in the sho1Delta null which had a partial loss of intermediate Mw mannan only. We conclude that the Chk1p HK is part of a functionally similar but parallel pathway to the Sho1p-Cek1p pathway that confers resistance to the cell wall inhibitors CR and CW. However, a functional relationship in mannan biosynthesis of Chk1p and Cek1p exists that only partially requires Sho1p.