Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Acunzo is active.

Publication


Featured researches published by Mario Acunzo.


Cancer Cell | 2009

miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation.

Michela Garofalo; Gianpiero Di Leva; Giulia Romano; Gerard J. Nuovo; Sung-Suk Suh; Apollinaire Ngankeu; Cristian Taccioli; Flavia Pichiorri; Hansjuerg Alder; Paola Secchiero; Pierluigi Gasparini; Arianna Gonelli; Stefan Costinean; Mario Acunzo; Gerolama Condorelli; Carlo M. Croce

Lung and liver cancers are among the most deadly types of cancer. Despite improvements in treatment over the past few decades, patient survival remains poor, underlining the need for development of targeted therapies. MicroRNAs represent a class of small RNAs frequently deregulated in human malignancies. We now report that miR-221&222 are overexpressed in aggressive non-small cell lung cancer and hepatocarcinoma cells, as compared with less invasive and/or normal lung and liver cells. We show that miR-221&222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and enhance cellular migration through the activation of the AKT pathway and metallopeptidases. Finally, we demonstrate that the MET oncogene is involved in miR-221&222 activation through the c-Jun transcription factor.


Oncogene | 2012

miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222

Mario Acunzo; Rosa Visone; Giulia Romano; Angelo Veronese; Francesca Lovat; Dario Palmieri; Arianna Bottoni; Michela Garofalo; Pierluigi Gasparini; Gerolama Condorelli; Mario Chiariello; Carlo M. Croce

Non-small cell lung cancer (NSCLC) accounts for ∼80% of all lung cancers. Although some advances in lung cancer therapy have been made, patient survival is still quite poor. Two microRNAs, miR-221 and miR-222, upregulated by the MET proto-oncogene, have been already described to enhance cell survival and to induce TNF-related apoptosis-inducing ligand (TRAIL) resistance in NSCLC cell lines, through the downregulation of p27kip1, PTEN and TIMP3. Here, we further investigated this pathway and showed that miR-130a, expressed at low level in lung cancer cell lines, by targeting MET was able to reduce TRAIL resistance in NSCLC cells through the c-Jun-mediated downregulation of miR-221 and miR-222. Moreover, we found that miR-130a reduced migratory capacity of NSCLC. A better understanding of MET-miR-221 and 222 axis regulation in drug resistance is the key in developing new strategies in NSCLC therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non–small-cell lung cancer through BIM down-regulation

Giulia Romano; Mario Acunzo; Michela Garofalo; Gianpiero Di Leva; Luciano Cascione; Ciro Zanca; Brad Bolon; Gerolama Condorelli; Carlo M. Croce

MicroRNAs (miRNAs) have an important role in the development of chemosensitivity or chemoresistance in different types of cancer. Activation of the ERK1/2 pathway is a major determinant of diverse cellular processes and cancer development and is responsible for the transcription of several important miRNAs. Here we show a link between the ERK1/2 pathway and BIM expression through miR-494. We blocked ERK1/2 nuclear activity through the overexpression of an ERK1/2 natural interactor, the protein PED/PEA15, and we performed a microRNA expression profile. miR-494 was the most down-regulated microRNA after ERK1/2 inactivation. Moreover, we found that miR-494 induced Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance in non–small-cell lung cancer (NSCLC) through the down-modulation of BIM. Elucidation of this undiscovered ERK1/2 pathway that regulates apoptosis and cell proliferation through miR-494 in NSCLC will greatly enhance our understanding of the mechanisms responsible for TRAIL resistance and will provide an additional arm for the development of anticancer therapies.


Blood | 2011

miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia

Rosa Visone; Angelo Veronese; Laura Z. Rassenti; Veronica Balatti; Dennis K. Pearl; Mario Acunzo; Stefano Volinia; Cristian Taccioli; Thomas J. Kipps; Carlo M. Croce

MicroRNAs play a crucial role in chronic lymphocytic leukemia. We investigated whether microRNAs can discriminate patients with a progressive disease from patients with a stable disease. We analyzed microRNA expression on leukemic cells isolated from 358 sequential samples of 114 patients with either stable or progressive disease. We found that during the course of the disease the expression values of miR-181b, the most dysregulated microRNA, decreased in samples of patients with a progressive (P < .001, training and validation sets) but not in samples of patients with a stable disease (P = .3, training set; P = .2, validation set) over time. A drop of ≥ 50% between sequential samples and/or a miR-181b value ≤ 0.005 at the starting time point were significant to differentiate progressive from stable disease (P = .004, training set; P < .001, validation set). These parameters were associated with high risk of requiring treatment (risk ratio, 5.8; 95% confidence interval, 2.5-14.9). We also observed that miR-181b targets Mcl-1 protein and that the decrease of its expression inversely correlated with increased protein levels of MCL1 and BCL2 target genes. We conclude that parameters defined on the basis of the miR-181b expression values specify disease progression in chronic lymphocytic leukemia and are associated with clinical outcome.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2.

Mario Acunzo; Giulia Romano; Dario Palmieri; Alessandro Laganà; Michela Garofalo; Veronica Balatti; Alessandra Drusco; Mario Chiariello; Patrick Nana-Sinkam; Carlo M. Croce

In the past decade, we have observed exciting advances in lung cancer therapy, including the development of targeted therapies. However, additional strategies for early detection and tumor-based therapy are still essential in improving patient outcomes. EGF receptor (EGFR) and MET (the receptor tyrosine kinase for hepatocyte growth factors) are cell-surface tyrosine kinase receptors that have been implicated in diverse cellular processes and as regulators of several microRNAs (miRNAs), thus contributing to tumor progression. Here, we demonstrate a biological link between EGFR, MET, and the miRNA cluster 23a∼27a∼24–2. We show that miR-27a regulates MET, EGFR, and Sprouty2 in lung cancer. In addition, we identify both direct and indirect mechanisms by which miR-27a can regulate both MET and EGFR. Thus, we propose a mechanism for MET and EGFR axis regulation that may lead to the development of therapeutics in lung cancer.


Nucleic Acids Research | 2009

UCbase & miRfunc: a database of ultraconserved sequences and microRNA function

Cristian Taccioli; Enrica Fabbri; Rosa Visone; Stefano Volinia; George A. Calin; Louise Y.Y. Fong; Roberto Gambari; Arianna Bottoni; Mario Acunzo; John P. Hagan; Marilena V. Iorio; Claudia Piovan; Giulia Romano; Carlo M. Croce

Four hundred and eighty-one ultraconserved sequences (UCRs) longer than 200 bases were discovered in the genomes of human, mouse and rat. These are DNA sequences showing 100% identity among the three species. UCRs are frequently located at genomic regions involved in cancer, differentially expressed in human leukemias and carcinomas and in some instances regulated by microRNAs (miRNAs). Here we present UCbase & miRfunc, the first database which provides ultraconserved sequences data and shows miRNA function. Also, it links UCRs and miRNAs with the related human disorders and genomic properties. The current release contains over 2000 sequences from three species (human, mouse and rat). As a web application, UCbase & miRfunc is platform independent and it is accessible at http://microrna.osu.edu/.UCbase4.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mutated β-catenin evades a microRNA-dependent regulatory loop

Angelo Veronese; Rosa Visone; Jessica Consiglio; Mario Acunzo; Laura Lupini; Taewan Kim; Manuela Ferracin; Francesca Lovat; Elena Miotto; Veronica Balatti; Lucilla D'Abundo; Laura Gramantieri; Luigi Bolondi; Yuri Pekarsky; Danilo Perrotti; Massimo Negrini; Carlo M. Croce

hsa-mir-483 is located within intron 2 of the IGF2 gene. We have previously shown oncogenic features of miR-483-3p through cooperation with IGF2 or by independently targeting the proapoptotic gene BBC3/PUMA. Here we demonstrate that expression of miR-483 can be induced independently of IGF2 by the oncoprotein β-catenin through an interaction with the basic helix–loop–helix protein upstream stimulatory transcription factor 1. We also show that β-catenin itself is a target of miR-483-3p, triggering a negative regulatory loop that becomes ineffective in cells harboring an activating mutation of β-catenin. These results provide insights into the complex regulation of the IGF2/miR-483 locus, revealing players in the β-catenin pathway.


Journal of Biological Chemistry | 2006

Activation of the Erk8 mitogen-activated protein (MAP) kinase by RET/PTC3, a constitutively active form of the RET proto-oncogene

Carlo Iavarone; Mario Acunzo; Francesca Carlomagno; Annunziata Catania; Rosa Marina Melillo; Stella M. Carlomagno; Massimo Santoro; Mario Chiariello

Mitogen-activated protein (MAP) kinases have a central role in several biological functions, including cell adhesion and spreading, chemotaxis, cell cycle progression, differentiation, and apoptosis. Extracellular signal-regulated kinase 8 (Erk8) is a large MAP kinase whose activity is controlled by serum and the c-Src non-receptor tyrosine kinase. Here, we show that RET/PTC3, an activated form of the RET proto-oncogene, was able to activate Erk8, and we demonstrate that such MAP kinase participated in RET/PTC3-dependent stimulation of the c-jun promoter. By using RET/PTC3 molecules mutated in specific tyrosine autophosphorylation sites, we characterized Tyr981, a known binding site for c-Src, as a major determinant of RET/PTC3-induced Erk8 activation, although, surprisingly, the underlying mechanism did not strictly depend on the activity of Src. In contrast, we present evidence that RET/PTC3 acts on Erk8 through Tyr981-mediated activation of c-Abl. Furthermore, we localized the region responsible for the modulation of Erk8 activity by the RET/PTC3 and Abl oncogenes in the Erk8 C-terminal domain. Altogether, these results support a role for Erk8 as a novel effector of RET/PTC3 and, therefore, RET biological functions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Toll-like receptor 3 (TLR3) activation induces microRNA-dependent reexpression of functional RARβ and tumor regression.

Roberta Galli; Alessio Paone; Muller Fabbri; Nicola Zanesi; Federica Calore; Luciano Cascione; Mario Acunzo; Antonella Stoppacciaro; Andrea Tubaro; Francesca Lovat; Pierluigi Gasparini; Paolo Fadda; Hansjuerg Alder; Stefano Volinia; Antonio Filippini; Elio Ziparo; Anna Riccioli; Carlo M. Croce

Toll-like receptor 3 (TLR3) is a key effector of the innate immune system against viruses. Activation of TLR3 exerts an antitumoral effect through a mechanism of action still poorly understood. Here we show that TLR3 activation by polyinosinic:polycytidylic acid induces up-regulation of microRNA-29b, -29c, -148b, and -152 in tumor-derived cell lines and primary tumors. In turn, these microRNAs induce reexpression of epigenetically silenced genes by targeting DNA methyltransferases. In DU145 and TRAMP-C1 prostate and MDA-MB-231 breast cancer cells, we demonstrated that polyinosinic:polycytidylic acid-mediated activation of TLR3 induces microRNAs targeting DNA methyltransferases, leading to demethylation and reexpression of the oncosuppressor retinoic acid receptor beta (RARβ). As a result, cancer cells become sensitive to retinoic acid and undergo apoptosis both in vitro and in vivo. This study provides evidence of an antitumoral mechanism of action upon TLR3 activation and the biological rationale for a combined TLR3 agonist/retinoic acid treatment of prostate and breast cancer.


Journal of Cellular and Molecular Medicine | 2008

PED is overexpressed and mediates TRAIL resistance in human non-small cell lung cancer

Ciro Zanca; Michela Garofalo; Cristina Quintavalle; Giulia Romano; Mario Acunzo; Pia Ragno; Nunzia Montuori; Mariarosaria Incoronato; Luigi Tornillo; Daniel Baumhoer; Carlo Briguori; Luigi Terracciano; Gerolama Condorelli

PED (phosphoprotein enriched in diabetes) is a death‐effector domain (DED) family member with a broad anti‐apoptotic action. PED inhibits the assembly of the death‐inducing signalling complex (DISC) of death receptors following stimulation. Recently, we reported that the expression of PED is increased in breast cancer cells and determines the refractoriness of these cells to anticancer therapy. In the present study, we focused on the role of PED in non‐small cell lung cancer (NSCLC), a tumour frequently characterized by evasion of apoptosis and drug resistance. Immunohistochemical analysis of a tissue microarray, containing 160 lung cancer samples, indicated that PED was strongly expressed in different lung tumour types. Western blotting performed with specimens from NSCLC‐affected patients showed that PED was strongly up‐regulated (>6 fold) in the areas of tumour compared to adjacent normal tissue. Furthermore, PED expression levels in NSCLC cell lines correlated with their resistance to tumour necrosis factor related apoptosis‐inducing ligand (TRAIL)‐induced cell death. The involvement of PED in the refractoriness to TRAIL‐induced cell death was investigated by silencing PED expression in TRAIL‐resistant NSCLC cells with small interfering (si) RNAs: transfection with PED siRNA, but not with cFLIP siRNA, sensitized cells to TRAIL‐induced cell death. In conclusion, PED is specifically overexpressed in lung tumour tissue and contributes to TRAIL resistance.

Collaboration


Dive into the Mario Acunzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Laganà

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerolama Condorelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge