Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Amendola is active.

Publication


Featured researches published by Mario Amendola.


Nature Neuroscience | 2009

Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke

Marie Carlén; Konstantinos Meletis; Christian Göritz; Vladimer Darsalia; Emma Evergren; Kenji Tanigaki; Mario Amendola; Fanie Barnabé-Heider; Maggie S.Y. Yeung; Luigi Naldini; Tasuku Honjo; Zaal Kokaia; Oleg Shupliakov; Robert Cassidy; Olle Lindvall; Jonas Frisén

Neurons are continuously generated from stem cells in discrete regions in the adult mammalian brain. We found that ependymal cells lining the lateral ventricles were quiescent and did not contribute to adult neurogenesis under normal conditions in mice but instead gave rise to neuroblasts and astrocytes in response to stroke. Ependymal cell quiescence was actively maintained by canonical Notch signaling. Inhibition of this pathway in uninjured animals allowed ependymal cells to enter the cell cycle and produce olfactory bulb neurons, whereas forced Notch signaling was sufficient to block the ependymal cell response to stroke. Ependymal cells were depleted by stroke and failed to self-renew sufficiently to maintain their own population. Thus, although ependymal cells act as primary cells in the neural lineage to produce neurons and glial cells after stroke, they do not fulfill defining criteria for stem cells under these conditions and instead serve as a reservoir that is recruited by injury.


Nature Methods | 2009

Stable knockdown of microRNA in vivo by lentiviral vectors

Bernhard Gentner; Giulia Schira; Alice Giustacchini; Mario Amendola; Brian D. Brown; Maurilio Ponzoni; Luigi Naldini

Studying microRNA function in vivo requires genetic strategies to generate loss-of-function phenotypes. We used lentiviral vectors to stably and specifically knock down microRNA by overexpressing microRNA target sequences from polymerase II promoters. These vectors effectively inhibited regulation of reporter constructs and natural microRNA targets. We used bone marrow reconstitution with hematopoietic stem cells stably overexpressing miR-223 target sequence to phenocopy the genetic miR-223 knockout mouse, indicating robust interference of microRNA function in vivo.


Nature Biotechnology | 2005

Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters

Mario Amendola; Mary Anna Venneri; Alessandra Biffi; Elisa Vigna; Luigi Naldini

Transferring multiple genes into the same cell allows for the combination of genetic correction, marking, selection and conditional elimination of transduced cells or the reconstitution of multisubunit components and synergistic pathways. However, this cannot be reliably accomplished by current gene transfer technologies. Based on the finding that some cellular promoters intrinsically promote divergent transcription, we have developed synthetic bidirectional promoters that mediate coordinate transcription of two mRNAs in a ubiquitous or a tissue-specific manner. Lentiviral vectors incorporating the new promoters enabled efficient dual gene transfer in several tissues in vivo after direct delivery or transgenesis, and in a human gene therapy model. Because divergent gene pairs, likely transcribed from shared promoters, are common in the genome, the synthetic promoters that we developed may mimic a well-represented feature of transcription. Vectors incorporating these promoters should increase the power of gene function studies and expand the reach and safety of gene therapy.


Science Translational Medicine | 2010

Identification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy

Bernhard Gentner; Ilaria Visigalli; Hidefumi Hiramatsu; Eric R. Lechman; Silvia Ungari; Alice Giustacchini; Giulia Schira; Mario Amendola; Angelo Quattrini; Sabata Martino; Aldo Orlacchio; John E. Dick; Alessandra Biffi; Luigi Naldini

Hematopoietic stem cell–specific microRNAs allow regulation of therapeutic transgene expression and enable effective gene therapy of globoid cell leukodystrophy. Scratching the Surface of the Holy Grail In Monty Python and the Holy Grail, when King Arthur cuts off one of the arms of the Black Knight, he claims it is only a scratch. Similarly, gene therapy—the insertion of genes into cells to reverse a condition or repair a biological process—has been heralded as a Holy Grail for the treatment of genetic diseases for nearly 40 years. Yet, the complications of gene therapy, including immune responses to the viral vector and cancers that result from insertional mutagenesis, are more comparable to a severed arm than a surface wound. However, researchers with the resiliency of the Black Knight have presided over recent successes, most notably in metastatic melanoma and immune cells, and have reignited the quest for gene therapy solutions to otherwise untreatable diseases. Gentner et al. build on these successes by identifying new microRNAs that can restrict gene therapy vectors to particular immune cell types and thus be used to safely treat globoid cell leukodystrophy (also known as Krabbe disease). Globoid cell leukodystrophy is a rare metabolic disorder caused by a mutation in a lysosomal enzyme called galactocerebrosidase (GALC). In patients who carry the mutation in both copies of the GALC gene, unmetabolized lipids accumulate in myelin-secreting glial cells, rendering them unable to produce the myelin sheath that normally wraps and protects nerves. This aberration results in severe and often fatal degeneration of motor skills. Bone marrow transplantation has been shown to benefit these patients if the disease is caught early enough. Genetic manipulation of the hematopoietic stem and progenitor cells (HSPCs) found in bone marrow may improve this therapy; however, high-level GALC expression in HSPCs, but not in more differentiated immune cells, is toxic. To address this issue, Gentner et al. identified miRNAs—short RNA sequences that often silence gene expression—that were specifically expressed in HSPCs but not in more differentiated cells. They then used these miRNAs in a GALC/HSPC gene therapy system to suppress GALC function in HSPCs upon transfer into a mouse model of globoid cell leukodystrophy. As these cells matured, amounts of HSPC-specific miRNA decreased and GALC expression increased. This approach protected the HSPCs from GALC toxicity, but allowed for successful gene therapy of the disease. In addition, these hematopoietic stem cell–specific miRNAs could be used as simple markers with which to isolate HSPCs for study and transplantation. This work thus provides a basis for improvements in HSPC-mediated gene therapy and may offer globoid cell leukodystrophy patients a new therapeutic option that resembles a scratch more than a chop. Globoid cell leukodystrophy (GLD; also known as Krabbe disease) is an invariably fatal lysosomal storage disorder caused by mutations in the galactocerebrosidase (GALC) gene. Hematopoietic stem cell (HSC)–based gene therapy is being explored for GLD; however, we found that forced GALC expression was toxic to HSCs and early progenitors, highlighting the need for improved regulation of vector expression. We used a genetic reporter strategy based on lentiviral vectors to detect microRNA activity in hematopoietic cells at single-cell resolution. We report that miR-126 and miR-130a were expressed in HSCs and early progenitors from both mice and humans, but not in differentiated progeny. Moreover, repopulating HSCs could be purified solely on the basis of miRNA expression, providing a new method relevant for human HSC isolation. By incorporating miR-126 target sequences into a GALC-expressing vector, we suppressed GALC expression in HSCs while maintaining robust expression in mature hematopoietic cells. This approach protected HSCs from GALC toxicity and allowed successful treatment of a mouse GLD model, providing a rationale to explore HSC-based gene therapy for GLD.


Molecular Therapy | 2009

Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform.

Mario Amendola; Laura Passerini; Ferdinando Pucci; Bernhard Gentner; Rosa Bacchetta; Luigi Naldini

RNA interference (RNAi) has tremendous potential for investigating gene function and developing new therapies. However, the design and validation of proficient vehicles for stable and safe microRNA (miR) and small interfering RNA (siRNA) delivery into relevant target cells remains an active area of investigation. Here, we developed a lentiviral platform to efficiently coexpress one or more natural/artificial miR together with a gene of interest from constitutive or regulated polymerase-II (Pol-II) promoters. By swapping the stem-loop (sl) sequence of a selected primary transcript (pri-miR) with that of other miR or replacing the stem with an siRNA of choice, we consistently obtained robust expression of the chimeric/artificial miR in several cell types. We validated our platform transducing a panel of engineered cells stably expressing sensitive reporters for miR activity and on a natural target. This approach allowed us to quantitatively assess at steady state the target suppression activity and expression level of each delivered miR and to compare it to those of endogenous miR. Exogenous/artificial miR reached the concentration and activity typical of highly expressed natural miR without perturbing endogenous miR maturation or regulation. Finally, we demonstrate the robust performance of the platform reversing the anergic/suppressive phenotype of human primary regulatory T cells (Treg) by knocking-down their master gene Forkhead Transcription Factor P3 (FOXP3).


Neurobiology of Disease | 2010

Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy

Anna Cozzi; Elisabetta Rovelli; Grazia Frizzale; Alessandro Campanella; Mario Amendola; Paolo Arosio; Sonia Levi

Neuroferritinopathies are dominantly inherited movement disorders associated with nucleotide insertions in the L-ferritin gene that modify the proteins C-terminus. The insertions alter physical and functional properties of the ferritins, causing an imbalance in brain iron homeostasis. We describe the effects produced by the over-expression in HeLa and neuroblastoma SH-SY5Y cells of two pathogenic L-ferritin variants, 460InsA and 498InsTC. Both peptides co-assembled with endogenous ferritins, producing molecules with reduced iron incorporation capacity, acting in a dominant negative manner. The cells showed an increase in cell death and a decrease in proteasomal activity. The formation of iron-ferritin aggregates became evident after 10 days of variant expression and was not associated with increased cell death. The addition of iron chelators or antioxidants restored proteasomal activity and reduced aggregate formation. The data indicate that cellular iron imbalance and oxidative damage are primary causes of cell death, while aggregate formation is a secondary effect.


Human Molecular Genetics | 2010

Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models

Annalisa Lattanzi; Margherita Neri; Claudio Maderna; Ilaria di Girolamo; Sabata Martino; Aldo Orlacchio; Mario Amendola; Luigi Naldini; Angela Gritti

Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.


Cancer Research | 2009

Reprogramming T Lymphocytes for Melanoma Adoptive Immunotherapy by T-Cell Receptor Gene Transfer with Lentiviral Vectors

Sara Bobisse; Maria Rondina; Anna Merlo; Veronica Tisato; Susanna Mandruzzato; Mario Amendola; Luigi Naldini; Ralph A. Willemsen; Reno Debets; Paola Zanovello; Antonio Rosato

T-cell receptor (TCR) gene transfer for cancer immunotherapy is limited by the availability of large numbers of tumor-specific T cells. TCR alpha and beta chains were isolated from a highly lytic HLA-A2-restricted cytotoxic T lymphocyte (CTL) clone recognizing the melanoma-associated Melan-A/MART-1 antigen and inserted into a lentiviral vector carrying a bidirectional promoter capable of robust and coordinated expression of the two transgenes. Lentiviral vector-based gene delivery systems have shown increased transfer efficiency and transgene expression compared with the widely used gamma-retroviral vectors. This vector performed more efficiently than a gamma-retrovirus-based vector containing the same expression cassette, resulting in a T-cell population with 60% to 80% of transgenic TCR expression with mainly CD8(+) intermediate effector phenotype. Transgenic T cells specifically produced cytokine in response to and killed antigen-expressing melanoma cells, retained an overlapping functional avidity in comparison with the TCR donor CTL clone, and exerted significant therapeutic effects in vivo upon adoptive transfer in melanoma-bearing severe combined immunodeficient mice. Optical imaging showed their accumulation in the tumor site. Overall, our results indicate that lentiviral vectors represent a valid tool for stable and high-intensity expression of transgenic TCR and support clinical exploitation of this approach for therapeutic application.


Journal of Cell Science | 2011

Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I

Laura E. Perlini; Francesca Botti; Eugenio F. Fornasiero; Maila Giannandrea; Dario Bonanomi; Mario Amendola; Luigi Naldini; Fabio Benfenati; Flavia Valtorta

Synapsins are synaptic vesicle (SV)-associated proteins that regulate synaptic transmission and neuronal differentiation. At early stages, Syn I and II phosphorylation at Ser9 by cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I/IV modulates axon elongation and SV-precursor dynamics. We evaluated the requirement of Syn I for synapse formation by siRNA-mediated knockdown as well as by overexpression of either its wild-type (WT) form or its phosphorylation mutants. Syn1 knockdown at 14 days in vitro caused a decrease in the number of synapses, accompanied by a reduction of SV recycling. Although overexpression of WT Syn I was ineffective, overexpression of its phosphorylation mutants resulted in a complex temporal regulation of synapse density. At early stages of synaptogenesis, phosphomimetic Syn I S9E significantly increased the number of synapses. Conversely, dephosphomimetic Syn I S9A decreased synapse number at more advanced stages. Overexpression of either WT Syn I or its phosphomimetic S9E mutant rescued the decrease in synapse number caused by chronic treatment with tetrodotoxin at early stages, suggesting that Syn I participates in an alternative PKA-dependent mechanism that can compensate for the impairment of the activity-dependent synaptogenic pathway. Altogether these results indicate that Syn I is an important regulator of synapse formation, which adjusts synapse number in response to extracellular signals.


Molecular Therapy | 2018

Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem/Progenitor Cells for Therapeutic Genomic Rearrangements

Annalisa Lattanzi; Vasco Meneghini; Giulia Pavani; Fatima Amor; Sophie Ramadier; Tristan Felix; Chiara Antoniani; Cecile Masson; Olivier Alibeu; Ciaran Lee; Matthew H. Porteus; Gang Bao; Mario Amendola; Fulvio Mavilio; Annarita Miccio

Editing the β-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of β-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the β-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with β-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9+ HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the β-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs.

Collaboration


Dive into the Mario Amendola's collaboration.

Top Co-Authors

Avatar

Luigi Naldini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Gentner

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annarita Miccio

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Fulvio Mavilio

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Laura Passerini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan K. Levings

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge