Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Beauregard is active.

Publication


Featured researches published by Mario Beauregard.


Biological Psychiatry | 2003

Neural circuitry underlying voluntary suppression of sadness

Johanne Lévesque; Fanny Eugène; Yves Joanette; Vincent Paquette; Boualem Mensour; G. Beaudoin; Jean-Maxime Leroux; Pierre Bourgouin; Mario Beauregard

BACKGROUND The ability to voluntarily self-regulate negative emotion is essential to a healthy psyche. Indeed, a chronic incapacity to suppress negative emotion might be a key factor in the genesis of depression and anxiety. Regarding the neural underpinnings of emotional self-regulation, a recent functional neuroimaging study carried out by our group has revealed that the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex are involved in voluntary suppression of sexual arousal. As few things are known, still, with respect to the neural substrate underlying volitional self-regulation of basic emotions, here we used functional magnetic resonance imaging to identify the neural circuitry associated with the voluntary suppression of sadness. METHODS Twenty healthy female subjects were scanned during a Sad condition and a Suppression condition. In the Sad condition, subjects were instructed to react normally to sad film excerpts whereas, in the Suppression condition, they were asked to voluntarily suppress any emotional reaction in response to comparable stimuli. RESULTS Transient sadness was associated with significant loci of activation in the anterior temporal pole and the midbrain, bilaterally, as well as in the left amygdala, left insula, and right ventrolateral prefrontal cortex (VLPFC) (Brodmann area [BA] 47). Correlational analyses carried out between self-report ratings of sadness and regional blood oxygen level dependent (BOLD) signal changes revealed the existence of positive correlations in the right VLPFC (BA 47), bilaterally, as well as in the left insula and the affective division of the left anterior cingulate gyrus (BA 24/32). In the Suppression condition, significant loci of activation were noted in the right DLPFC (BA 9) and the right orbitofrontal cortex (OFC) (BA 11), and positive correlations were found between the self-report ratings of sadness and BOLD signal changes in the right OFC (BA 11) and right DLPFC (BA 9). CONCLUSIONS These results confirm the key role played by the DLPFC in emotional self-regulation. They also indicate that the right DLPFC and right OFC are components of a neural circuit implicated in voluntary suppression of sadness.


Human Brain Mapping | 2002

Areas of brain activation in males and females during viewing of erotic film excerpts

S. Karama; André Roch Lecours; Jean-Maxime Leroux; Pierre Bourgouin; G. Beaudoin; Sven Joubert; Mario Beauregard

Various lines of evidence indicate that men generally experience greater sexual arousal (SA) to erotic stimuli than women. Yet, little is known regarding the neurobiological processes underlying such a gender difference. To investigate this issue, functional magnetic resonance imaging was used to compare the neural correlates of SA in 20 male and 20 female subjects. Brain activity was measured while male and female subjects were viewing erotic film excerpts. Results showed that the level of perceived SA was significantly higher in male than in female subjects. When compared to viewing emotionally neutral film excerpts, viewing erotic film excerpts was associated, for both genders, with bilateral blood oxygen level dependant (BOLD) signal increases in the anterior cingulate, medial prefrontal, orbitofrontal, insular, and occipitotemporal cortices, as well as in the amygdala and the ventral striatum. Only for the group of male subjects was there evidence of a significant activation of the thalamus and hypothalamus, a sexually dimorphic area of the brain known to play a pivotal role in physiological arousal and sexual behavior. When directly compared between genders, hypothalamic activation was found to be significantly greater in male subjects. Furthermore, for male subjects only, the magnitude of hypothalamic activation was positively correlated with reported levels of SA. These findings reveal the existence of similarities and dissimilarities in the way the brain of both genders responds to erotic stimuli. They further suggest that the greater SA generally experienced by men, when viewing erotica, may be related to the functional gender difference found here with respect to the hypothalamus. Hum. Brain Mapping 16:1–13, 2002.


Neuroreport | 1998

The functional neuroanatomy of major depression: an fmri study using an emotional activation paradigm

Mario Beauregard; Jean-Maxime Leroux; Simon Bergman; Yervant Arzoumanian; G. Beaudoin; Pierre Bourgouin; Emmanuel Stip

AN important issue regarding the neural basis of major depression is whether the functional brain changes associated with the affect disturbance seen in this syndrome are similar to those that accompany transient sadness in normal subjects. To address this question, we carried out an fMRI study using an emotional activation paradigm. Brain activity associated with passive viewing of an emotionally laden film clip aimed at inducing a transient state of sadness was contrasted with that associated with passive viewing of an emotionally neutral film clip in patients suffering from unipolar depression and in normal control subjects. Results showed that transient sadness produced significant activation in the medial and inferior prefrontal cortices, the middle temporal cortex, the cerebellum and the caudate in both depressed and normal subjects. They also revealed that passive viewing of the emotionally laden film clip produced a significantly greater activation in the left medial prefrontal cortex and in the right cingulate gyrus in depressed patients than in normal control subjects. These findings suggest that these two cortical regions might be part of a neural network implicated in the pathophysiology of major depression. Taken together, these results strongly support the view that activation paradigms represent an extremely useful and powerful way of delineating the functional anatomy of the various symptoms that characterize major depression.


Neuroscience Letters | 2006

Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: A functional magnetic resonance imaging study

Johanne Lévesque; Mario Beauregard; Boualem Mensour

Attention Deficit Hyperactivity Disorder (AD/HD) is a neurodevelopmental disorder mainly characterized by impairments in cognitive functions. Functional neuroimaging studies carried out in individuals with AD/HD have shown abnormal functioning of the anterior cingulate cortex (ACC) during tasks involving selective attention. In other respects, there is mounting evidence that neurofeedback training (NFT) can significantly improve cognitive functioning in AD/HD children. In this context, the present functional magnetic resonance imaging (fMRI) study was conducted to measure the effect of NFT on the neural substrates of selective attention in children with AD/HD. Twenty AD/HD children--not taking any psychostimulant and without co-morbidity-participated to the study. Fifteen children were randomly assigned to the Experimental (EXP) group (NFT), whereas the other five children were assigned to the Control (CON) group (no NFT). Subjects from both groups were scanned 1 week before the beginning of the NFT (Time 1) and 1 week after the end of this training (Time 2), while they performed a Counting Stroop task. At Time 1, for both groups, the Counting Stroop task was associated with significant loci of activation in the left superior parietal lobule. No activation was noted in the ACC. At Time 2, for both groups, the Counting Stroop task was still associated with significant activation of the left superior parietal lobule. This time, however, for the EXP group only there was a significant activation of the right ACC. These results suggest that in AD/HD children, NFT has the capacity to normalize the functioning of the ACC, the key neural substrate of selective attention.


NeuroImage | 2011

Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators.

Véronique A. Taylor; Joshua A. Grant; Véronique Daneault; Geneviève Scavone; Estelle Breton; Sébastien Roffe-Vidal; Jérôme Courtemanche; Anaïs S. Lavarenne; Mario Beauregard

There is mounting evidence that mindfulness meditation is beneficial for the treatment of mood and anxiety disorders, yet little is known regarding the neural mechanisms through which mindfulness modulates emotional responses. Thus, a central objective of this functional magnetic resonance imaging study was to investigate the effects of mindfulness on the neural responses to emotionally laden stimuli. Another major goal of this study was to examine the impact of the extent of mindfulness training on the brain mechanisms supporting the processing of emotional stimuli. Twelve experienced (with over 1000 h of practice) and 10 beginner meditators were scanned as they viewed negative, positive, and neutral pictures in a mindful state and a non-mindful state of awareness. Results indicated that the Mindful condition attenuated emotional intensity perceived from pictures, while brain imaging data suggested that this effect was achieved through distinct neural mechanisms for each group of participants. For experienced meditators compared with beginners, mindfulness induced a deactivation of default mode network areas (medial prefrontal and posterior cingulate cortices) across all valence categories and did not influence responses in brain regions involved in emotional reactivity during emotional processing. On the other hand, for beginners relative to experienced meditators, mindfulness induced a down-regulation of the left amygdala during emotional processing. These findings suggest that the long-term practice of mindfulness leads to emotional stability by promoting acceptance of emotional states and enhanced present-moment awareness, rather than by eliciting control over low-level affective cerebral systems from higher-order cortical brain regions. These results have implications for affect-related psychological disorders.


Journal of Cognitive Neuroscience | 1997

The neural substrate for concrete, abstract, and emotional word lexica a positron emission tomography study

Mario Beauregard; Howard Chertkow; Daniel N. Bub; S. Murtha; R. Dixon; Alan C. Evans

Viewing of single words produces a cognitively complex mental state in which anticipation, emotional responses, visual perceptual analysis, and activation of orthographic representations are all occurring. Previous PET studies have produced conflicting results, perhaps due to the conflation of these separate processes or the presence of subtle differences in stimulus material and methodology. A PET study of 10 normal individuals was carried out using the bolus H215O intravenous injection technique to examine components of processing of passively viewed words. Subjects viewed blocks of random-letter strings or abstract, concrete, or emotional words (words with positive or negative emotional salience). Baseline conditions were either passive viewing of plus signs or an anticipatory state (viewing plus signs after being warned to expect words or random letters to appear imminently). All words (and to a lesser extent the random letters) produced robust activation of cerebral blood flow in the left posterior temporal lobe, in addition to bilateral occipital activation. Furthermore, emotional words produced activation in orbital and midline frontal structures. Further activation in the left orbital frontal gyrus, the left inferior temporal gyrus, the left caudate nucleus, the anterior cingulate, and the cerebellum could be ascribed to the anticipatory state. This pattern of activity suggests that the occipital regions are recruited for visual-perceptual analysis of words, and the left temporal lobe represents the neural substrate for the orthographic lexicon. In addition, emotionally relevant material produces further processing in limbic brain structures of the frontal lobes. Detailed analysis of the task therefore substantially clarifies the neuroanatomic basis of single-word processing.


Journal of Cognitive Neuroscience | 1999

The Neural Substrate of Picture Naming

Susan Murtha; Howard Chertkow; Mario Beauregard; Alan C. Evans

A PET study of 10 normal males was carried out using the bolus H215O intravenous injection technique to examine the effects of picture naming and semantic judgment on blood flow. In a series of conditions, subjects (1) passively viewed flashing plus signs, (2) noted the occurrence of abstract patterns, (3) named animal pictures, or (4) carried out a semantic judgment on animal pictures. Anticipatory scans were carried out after the subjects were presented with the instructions but before they began the cognitive task, as they were passively viewing plus signs. Our results serve to clarify a number of current controversies regarding the neural substrate of picture naming. The results indicate that the fusiform gyrus is unlikely to be the region where low-level perceptual processing such as shape analysis is undertaken. In fact, our evidence suggests that activation of the fusiform gyrus is most likely related to visual perceptual semantic processing. In addition, the inferior/middle frontal lobe activity observed while performing the picture naming and semantic judgment tasks does not appear to be due to the effects of anticipation or preparation. Furthermore, there appears to be a set of regions (a semantic network) that becomes activated regardless of whether the subjects perform a picture naming or semantic judgment task. Finally, picture naming of animals did not activate either parietal regions or anterior inferior left temporal regions, regardless of what subtraction baseline was used.


Brain and Language | 2004

Neural correlates of lexical and sublexical processes in reading

Sven Joubert; Mario Beauregard; Nathalie Walter; Pierre Bourgouin; G. Beaudoin; Jean-Maxime Leroux; Sherif Karama; André Roch Lecours

The purpose of the present study was to compare the brain regions and systems that subserve lexical and sublexical processes in reading. In order to do so, three types of tasks were used: (i). silent reading of very high frequency regular words (lexical task); (ii). silent reading of nonwords (sublexical task); and, (iii). silent reading of very low frequency regular words (sublexical task). All three conditions were contrasted with a visual/phonological baseline condition. The lexical condition engaged primarily an area at the border of the left angular and supramarginal gyri. Activation found in this region suggests that this area may be involved in mapping orthographic-to-phonological whole word representations. Both sublexical conditions elicited significantly greater activation in the left inferior prefrontal gyrus. This region is thought to be associated with sublexical processes in reading such as grapheme-to-phoneme conversion, phoneme assembly and underlying verbal working memory processes. Activation in the left IFG was also associated with left superior and middle temporal activation. These areas are thought to be functionally correlated with the left IFG and to contribute to a phonologically based form of reading. The results as a whole demonstrate that lexical and sublexical processes in reading activate different regions within a complex network of brain structures.


Philosophical Transactions of the Royal Society B | 2005

Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction

Jeffrey M. Schwartz; Henry P. Stapp; Mario Beauregard

Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.


Neuroscience Letters | 2006

Neural correlates of a mystical experience in Carmelite nuns

Mario Beauregard; Vincent Paquette

The main goal of this functional magnetic resonance imaging (fMRI) study was to identify the neural correlates of a mystical experience. The brain activity of Carmelite nuns was measured while they were subjectively in a state of union with God. This state was associated with significant loci of activation in the right medial orbitofrontal cortex, right middle temporal cortex, right inferior and superior parietal lobules, right caudate, left medial prefrontal cortex, left anterior cingulate cortex, left inferior parietal lobule, left insula, left caudate, and left brainstem. Other loci of activation were seen in the extra-striate visual cortex. These results suggest that mystical experiences are mediated by several brain regions and systems.

Collaboration


Dive into the Mario Beauregard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Stip

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Beaudoin

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Cherine Fahim

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge