Mario Cañadas
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Cañadas.
The Journal of Nuclear Medicine | 2012
Andrew L. Goertzen; Qinan Bao; Melanie Bergeron; Eric Blankemeyer; Stephan Blinder; Mario Cañadas; Arion F. Chatziioannou; Katherine Dinelle; Esmat Elhami; Hans-Sonke Jans; Eduardo Lage; Roger Lecomte; Vesna Sossi; Suleman Surti; Yuan-Chuan Tai; Juan J. Vaquero; E. Vicente; Darin Williams; Richard Laforest
The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. Methods: We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: microPET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. Results: The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. Conclusion: Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand.
ieee nuclear science symposium | 2008
P. Arce; Pedro Rato; Mario Cañadas; Juan Ignacio Lagares
The use of Monte Carlo has proved to be an essential tool in nuclear medicine, to assist in the design of new medical devices, in the development of new image reconstruction algorithms and correction techniques in PET and SPECT, for the precise determination of the dose in radiotherapy, etc. Among the several general-purpose codes, Geant4 is widely used for its modern technology, its flexibility and its wide range of applications. Nevertheless the use of Geant4 in nuclear medicine requires often a long learning-curve that implies a good knowledge of C++ and the Geant4 codes itself to write the code needed to obtain the required results. GAMOS, the Geant4-based Architecture for Medicine-Oriented Simulations, facilitates the use of Geant4 by providing a simple script language that covers almost all the needs of a nuclear medicine simulation. Its modular and flexible design, based on the use of the plug-in technology, as well as a clear documentation and detailed examples, makes easy to extend the framework to cover any extra need an expert user may have. We describe in this paper the basic components of GAMOS as well as provide a few examples of its use in PET and Radiotherapy simulations.
Physics in Medicine and Biology | 2011
Mario Cañadas; P Arce; P Rato Mendes
Monte Carlo-based modelling is a powerful tool to help in the design and optimization of positron emission tomography (PET) systems. The performance of these systems depends on several parameters, such as detector physical characteristics, shielding or electronics, whose effects can be studied on the basis of realistic simulated data. The aim of this paper is to validate a comprehensive study of the Raytest ClearPET small-animal PET scanner using a new Monte Carlo simulation platform which has been developed at CIEMAT (Madrid, Spain), called GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). This toolkit, based on the GEANT4 code, was originally designed to cover multiple applications in the field of medical physics from radiotherapy to nuclear medicine, but has since been applied by some of its users in other fields of physics, such as neutron shielding, space physics, high energy physics, etc. Our simulation model includes the relevant characteristics of the ClearPET system, namely, the double layer of scintillator crystals in phoswich configuration, the rotating gantry, the presence of intrinsic radioactivity in the crystals or the storage of single events for an off-line coincidence sorting. Simulated results are contrasted with experimental acquisitions including studies of spatial resolution, sensitivity, scatter fraction and count rates in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 protocol. Spatial resolution results showed a discrepancy between simulated and measured values equal to 8.4% (with a maximum FWHM difference over all measurement directions of 0.5 mm). Sensitivity results differ less than 1% for a 250-750 keV energy window. Simulated and measured count rates agree well within a wide range of activities, including under electronic saturation of the system (the measured peak of total coincidences, for the mouse-sized phantom, was 250.8 kcps reached at 0.95 MBq mL(-1) and the simulated peak was 247.1 kcps at 0.87 MBq mL(-1)). Agreement better than 3% was obtained in the scatter fraction comparison study. We also measured and simulated a mini-Derenzo phantom obtaining images with similar quality using iterative reconstruction methods. We concluded that the overall performance of the simulation showed good agreement with the measured results and validates the GAMOS package for PET applications. Furthermore, its ease of use and flexibility recommends it as an excellent tool to optimize design features or image reconstruction techniques.
IEEE Transactions on Nuclear Science | 2011
Mario Cañadas; Miguel Embid; Eduardo Lage; Manuel Desco; Juan José Vaquero; Jose Manuel Perez
In this work, we compare two commercial positron emission tomography (PET) scanners installed at CIEMAT (Madrid, Spain): the ClearPET and the rPET-1. These systems have significant geometrical differences, such as the axial field of view (110 mm on ClearPET versus 45.6 mm on rPET-1), the configuration of the detectors (whole ring on ClearPET versus one pair of planar blocks on rPET-1) and the use of an axial shift between ClearPET detector modules. We used an assessment procedure that fulfilled the recommendations of the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard. The methodology includes studies of spatial resolution, sensitivity, scatter fraction, count losses and image quality. Our experiments showed a central spatial resolution of 1.5 mm (transaxial), 3.2 mm (axial) for the ClearPET and 1.5 mm (transaxial), 1.6 mm (axial) for the rPET-1, with a small variation across the transverse axis on both scanners (~1 mm). The absolute sensitivity at the centre of the field of view was 4.7% for the ClearPET and 1.0% for the rPET-1. The peak noise equivalent counting rate for the mouse-sized phantom was 73.4 kcps reached at 0.51 MBq/mL on the ClearPET and 29.2 kcps at 1.35 MBq/mL on the rPET-1. The recovery coefficients measured using the image quality phantom ranged from 0.11 to 0.89 on the ClearPET and from 0.14 to 0.81 on the rPET-1. The overall performance shows that both the ClearPET and the rPET-1 systems are very suitable for preclinical research and imaging of small animals.
ieee nuclear science symposium | 2009
M. Chmeissani; P. Arce; Mario Cañadas
Novel conceptual design of Pixel-PET scanner, based on pixelated solid-state detector, is presented. Pixel-PET simply solves most of the intrinsic limitations that are inherited in the current PET scanners, and in particular those that are based on scintillating crystals, such as low detection efficiency, low energy resolution, low spatial resolution, parallax effect, image noise from scattered photons, and non-compatibility with strong magnetic field. The simulation results followed by image reconstruction show, when compared with state-of-the-art PET scanner for head, based on scintillating crystals (LSO/LYSO), the detection efficiency increases by a factor of 2.3 and the scattered photons are reduced from 98% to 3%, thus allowing to resolve the 1.2mm rod in Derenzo-like phantom with peak-to-valley ratio of 3 to 1.
IEEE Transactions on Medical Imaging | 2014
Ekaterina Mikhaylova; Gianluca De Lorenzo; M. Chmeissani; M Kolstein; Mario Cañadas; P. Arce; Yonatan Calderón; Dilber Uzun; Gerard Ariño; José Gabriel Macias-Montero; Ricardo Martínez; C. Puigdengoles; Enric Cabruja
The aim of this work is the evaluation of the design for a nonconventional PET scanner, the voxel imaging PET (VIP), based on pixelated room-temperature CdTe detectors yielding a true 3-D impact point with a density of 450 channels/cm3, for a total 6 336 000 channels in a seamless ring shaped volume. The system is simulated and evaluated following the prescriptions of the NEMA NU 2-2001 and the NEMA NU 4-2008 standards. Results show that the excellent energy resolution of the CdTe detectors (1.6% for 511 keV photons), together with the small voxel pitch (1 × 1 × 2 mm3), and the crack-free ring geometry, give the design the potential to overcome the current limitations of PET scanners and to approach the intrinsic image resolution limits set by physics. The VIP is expected to reach a competitive sensitivity and a superior signal purity with respect to values commonly quoted for state-of-the-art scintillating crystal PETs. The system can provide 14 cps/kBq with a scatter fraction of 3.95% and 21 cps/kBq with a scatter fraction of 0.73% according to NEMA NU 2-2001 and NEMA NU 4-2008, respectively. The calculated NEC curve has a peak value of 122 kcps at 5.3 kBq/mL for NEMA NU 2-2001 and 908 kcps at 1.6 MBq/mL for NEMA NU 4-2008. The proposed scanner can achieve an image resolution of ~ 1 mm full-width at half-maximum in all directions. The virtually noise-free data sample leads to direct positive impact on the quality of the reconstructed images. As a consequence, high-quality high-resolution images can be obtained with significantly lower number of events compared to conventional scanners. Overall, simulation results suggest the VIP scanner can be operated either at normal dose for fast scanning and high patient throughput, or at low dose to decrease the patient radioactivity exposure. The design evaluation presented in this work is driving the development and the optimization of a fully operative prototype to prove the feasibility of the VIP concept.
IEEE Transactions on Nuclear Science | 2011
I. Sarasola; Pedro Rato Mendes; P. García de Acilu; Mario Cañadas; O. Vela; Jose Manuel Cela; J.C. Oller; L. Núñez; C. Willmott; Jose Manuel Perez
We have implemented and evaluated a positron emission tomography (PET) demonstrator using two monolithic detector blocks operating in coincidence with dedicated application-specific integrated circuit (ASIC) readout. Each detector is composed of a monolithic lutetium yttrium orthosilicate (LYSO) scintillator coupled to a pair of Hamamatsu S8550-02 APD arrays. The front-end electronics of this demonstrator is based on the VATA240 ASIC readout, which sums the charge provided by each row and column of the APD array. The ASIC has been characterized obtaining a noise per row or column less than 2000 electrons rms with the APD at its inputs and a good linear response in the range from 5 fC to 30 fC. We have acquired energy spectra of 22Na and 137Cs radioactive sources, achieving energy resolutions between 13.2% and 14.1% full width at half maximum (FWHM) at 511 keV. We have estimated the interaction position over the surface of the monolithic blocks using Neural Networks (NN) position determining algorithms, obtaining spatial resolutions at the detector level down to 2.1 mm FWHM. By using this detector technology and electronics we have achieved images of point sources with spatial resolutions as good as 2.1 mm FWHM for filtered back projection (FBP) reconstructions methods with single slice rebinning (SSRB). Based on the results obtained with this demonstrator, we are developing a PET insert for existing magnetic resonance imaging (MRI) equipment, to be installed in a collaborating hospital and used for clinical PET-MRI of the human brain.
ieee nuclear science symposium | 2007
P.S. Roldan; Mario Cañadas; O. Dietzel; C. Pautrot; I. Sarasola; A. Wagner
The ClearPET is a high performance small animal PET scanner that has been developed by the Crystal Clear Collaboration. The commercial ClearPET is a very flexible small animal PET scanner that can operate at two different detector diameters (135 mm and 220 mm) thus adapting to different animal sizes. Furthermore it can also operate with partial ring configurations thanks to its rotating gantry. This work will compare the performances of the full ring (20 detectors) and small diameter (135 mm) configuration with the ones obtained using partial ring arrangements (12, 16 detectors) and the open diameter configuration (220 mm). The results presented here correspond to studies made with several of the commercial ClearPET scanners installed worldwide. In addition, we will present the evolution of the ClearPET towards PET-CT multimodality.
Journal of Instrumentation | 2012
P. García de Acilu; I. Sarasola; Mario Cañadas; R. Cuerdo; P. Rato Mendes; L. Romero; C. Willmott
We are developing a PET insert for existing MRI equipment to be used in clinical PET/MR studies of the human brain. The proposed scanner is based on annihilation gamma detection with monolithic blocks of cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) coupled to magnetically-compatible avalanche photodiodes (APD) matrices. The light distribution generated on the LYSO:Ce block provides the impinging position of the 511 keV photons by means of a positioning algorithm. Several positioning methods, from the simplest Anger Logic to more sophisticate supervised-learning Neural Networks (NN), can be implemented to extract the incidence position of gammas directly from the APD signals. Finally, an optimal method based on a two-step Feed-Forward Neural Network has been selected. It allows us to reach a resolution at detector level of 2 mm, and acquire images of point sources using a first BrainPET prototype consisting of two monolithic blocks working in coincidence. Neural networks provide a straightforward positioning of the acquired data once they have been trained, however the training process is usually time-consuming. In order to obtain an efficient positioning method for the complete scanner it was necessary to find a training procedure that reduces the data acquisition and processing time without introducing a noticeable degradation of the spatial resolution. A grouping process and posterior selection of the training data have been done regarding the similitude of the light distribution of events which have one common incident coordinate (transversal or longitudinal). By doing this, the amount of training data can be reduced to about 5% of the initial number with a degradation of spatial resolution lower than 10%.
Journal of Instrumentation | 2013
G. De Lorenzo; M. Chmeissani; Dilber Uzun; Machiel Kolstein; Ilker Ozsahin; Ekaterina Mikhaylova; P. Arce; Mario Cañadas; Gerard Ariño; Y Calderón
A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.