Mario Capunzo
University of Salerno
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Capunzo.
Nature Communications | 2015
Alessandra Rosati; Anna Basile; Raffaella D'Auria; Morena d'Avenia; Margot De Marco; Antonia Falco; Michelina Festa; Luana Guerriero; Vittoria Iorio; Roberto Parente; Maria Pascale; Liberato Marzullo; Renato Franco; Claudio Arra; Antonio Barbieri; Domenica Rea; Giulio Menichini; Michael Hahne; Maarten F. Bijlsma; Daniela Barcaroli; Gianluca Sala; Fabio F. di Mola; Pierluigi Di Sebastiano; Jelena Todoric; Laura Antonucci; Vincent Corvest; Anass Jawhari; Matthew A. Firpo; David A. Tuveson; Mario Capunzo
The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential.
International Journal of Hygiene and Environmental Health | 2009
Oriana Motta; Antonio Proto; Francesco De Carlo; Francesco De Caro; Emanuela Santoro; L Brunetti; Mario Capunzo
Atactic polystyrene, one of the most widely used chemical products, was subjected to novel chemically oxidative treatments able to trigger a great variety of physical and chemical changes in the polymers chains. The oxidized polystyrene samples, when analyzed with Fourier transform infrared spectroscopy (FTIR) clearly showed the formation of carbonyl groups and hydroxyl groups, which increased with the increase in the strength of chemically oxidative treatments. In fungal degradation tests deploying Curvularia species, the fungus colonized the oxidized samples within 9 weeks. Colonization was confirmed by microscopic examination, which showed that the hyphae had adhered to and penetrated the polymers structure in all the treated samples. Such colonization and adhesion by microorganisms are a fundamental prerequisite for biodegradation of polymers.
Cell Cycle | 2014
Anna Paola Bruno; Francesca Isabella De Simone; Vittoria Iorio; Margot De Marco; Kamel Khalili; Ilker Kudret Sariyer; Mario Capunzo; Stefania Lucia Nori; Alessandra Rosati
BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.
International Journal of Endocrinology | 2015
Maurizio Montella; Giovanni D'Arena; Anna Crispo; Mario Capunzo; Flavia Nocerino; Maria Grimaldi; Antonio Barbieri; Anna Maria D'Ursi; Mario Felice Tecce; Alfonso Amore; Massimiliano Galdiero; Gennaro Ciliberto; Aldo Giudice
Infection with hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC) in developed countries. Epidemiological reports indicate that the incidence of HBV-related HCC is higher in males and postmenopausal females than other females. Increasing evidence suggests that sex hormones such as androgens and estrogens play an important role in the progression of an HBV infection and in the development of HBV-related HCC. While androgen is supposed to stimulate the androgen signaling pathway and cooperate to the increased transcription and replication of HBV genes, estrogen may play a protecting role against the progression of HBV infections and in the development of HBV-related HCC through decreasing HBV RNA transcription and inflammatory cytokines levels. Additionally, sex hormones can also affect HBV-related hepatocarcinogenesis by inducing epigenetic changes such as the regulation of mRNA levels by microRNAs (miRNAs), DNA methylation, and histone modification in liver tissue. This review describes the molecular mechanisms underlying the gender disparity in HBV-related HCC with the aim of improving the understanding of key factors underneath the sex disparity often observed in HBV infections. Furthermore, the review will propose more effective prevention strategies and treatments of HBV-derived diseases.
Oxidative Medicine and Cellular Longevity | 2016
Aldo Giudice; Giovanni D'Arena; Anna Crispo; Mario Felice Tecce; Flavia Nocerino; Maria Grimaldi; Emanuela Rotondo; Anna Maria D'Ursi; Mario Scrima; Massimiliano Galdiero; Gennaro Ciliberto; Mario Capunzo; Gianluigi Franci; Antonio Barbieri; Sabrina Bimonte; Maurizio Montella
MicroRNAs are short (21–23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.
Cell Death and Disease | 2014
Luana Guerriero; K Chong; Renato Franco; Alessandra Rosati; F De Caro; Mario Capunzo; Maria Caterina Turco; D Sb Hoon
BAG3 protein expression in melanoma metastatic lymph nodes correlates with patients’ survival
Pharmacoepidemiology and Drug Safety | 2013
Pierpaolo Cavallo; S. Pagano; Giovanni Boccia; Francesco De Caro; Mario De Santis; Mario Capunzo
Networks exist in many different aspects of the world, at social, economical, biological, and molecular levels. Network science studies their parameters, or quantitative indicators; its instruments make it possible to draw and analyze networks from a mathematical perspective.
Cell Death and Disease | 2015
Vittoria Iorio; Michelina Festa; Alessandra Rosati; Michael Hahne; C Tiberti; Mario Capunzo; De Laurenzi; Maria Caterina Turco
Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release.
Journal of Leukocyte Biology | 2018
Antonietta Santoro; Chiara Carmela Spinelli; Stefania Martucciello; Stefania Lucia Nori; Mario Capunzo; Annibale Alessandro Puca; Elena Ciaglia
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The “senescence machinery” has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases.
Cell Death and Disease | 2016
Albino Carrizzo; Antonio Damato; Mariateresa Ambrosio; Antonia Falco; Alessandra Rosati; Mario Capunzo; Michele Madonna; Maria Caterina Turco; James L. Januzzi; Vincenzo De Laurenzi; Carmine Vecchione
Bcl2-associated athanogene 3 (BAG3), is constitutively expressed in a few normal cell types, including myocytes, peripheral nerves and in the brain, and is also expressed in certain tumors. To date, the main studies about the role of BAG3 are focused on its pro-survival effect in tumors through various mechanisms that vary according to cellular type. Recently, elevated concentrations of a soluble form of BAG3 were described in patients affected by advanced stage of heart failure (HF), identifying BAG3 as a potentially useful biomarker in monitoring HF progression. Despite the finding of high levels of BAG3 in the sera of HF patients, there are no data on its possible role on the modulation of vascular tone and blood pressure levels. The aim of this study was to investigate the possible hemodynamic effects of BAG3 performing both in vitro and in vivo experiments. Through vascular reactivity studies, we demonstrate that BAG3 is capable of evoking dose-dependent vasorelaxation. Of note, BAG3 exerts its vasorelaxant effect on resistance vessels, typically involved in the blood pressure regulation. Our data further show that the molecular mechanism through which BAG3 exerts this effect is the activation of the PI3K/Akt signalling pathway leading to nitric oxide release by endothelial cells. Finally, we show that in vivo BAG3 administration is capable of regulating blood pressure and that this is dependent on eNOS regulation since this ability is lost in eNOS KO animals.