Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Cesarelli is active.

Publication


Featured researches published by Mario Cesarelli.


biomedical circuits and systems conference | 2008

A mobile EEG system with dry electrodes

Gaetano Gargiulo; Paolo Bifulco; Rafael A. Calvo; Mario Cesarelli; Craig Jin; A. van Schaik

A new EEG recording device demonstrating an ultra-high input impedance is presented. Dry electrodes made of conductive rubber were employed for this study with careful shielding of the electrodes and cables. The device has a small form factor, so it is wearable, and has continuous Bluetooth connectivity. Tests were performed to assess features of the proposed device and to compare it with standard clinical devices. Simultaneous EEG recordings were measured from adjacent sites on the scalp using the new EEG device with dry electrodes and a reference EEG device with standard electrodes. The gain and bandwidth settings for the two devices were set similarly. Traditional closing eyes alpha-wave replacement and mu-rhythm were compared in both the time and frequency domains. Results from eight subjects show a high correlation coefficient (0.83 on average) between recordings of contiguous dry and standard electrodes. We conclude that the performance of the new device is comparable with standard EEG recording equipment, but offers a shorter set-up time, the possibility of long-term recording, and a wireless connection - all of which are advantages valuable in the field of brain computer interfaces and neurofeedback.


Computers in Biology and Medicine | 2009

Comparison of short term variability indexes in cardiotocographic foetal monitoring

Mario Cesarelli; Maria Fiammetta Romano; Paolo Bifulco

Concise indexes related to variability of foetal heart rate (FHR) are usually utilised for foetal monitoring; they enrich information provided by cardiotocography (CTG). Most attention is paid to the short term variability (STV), which relates to activity and reaction of autonomic nervous control of foetal heart. There is not a unique method to compute short term variability of the FHR but different formulas have been proposed and are employed in clinical and scientific environments: this leads to different evaluations and makes difficult comparative studies. Nine short term variability indexes: Arduini, Dalton, Organ, Sonicaid 8000, Van Geijn, Yeh, Zugaib a modified version of Arduini index and Standard Deviation were considered and compared to test their robustness in CTG applications. A large set of synthetic foetal heart rate series with known features were used to compare indexes performances. Different amounts of variability, mean foetal heart rate, storage rates, baseline variations were considered. The different indexes were in particular tested for their capability to recognise short term heart rate variability variation, their dependence on heart rate signal storage rate (as those provided by commercial cardiotocographic devices), on mean value of the foetal heart rate and on modifications of the floatingline, such in case of accelerations or decelerations. Concise statistical parameters relative to indexes scores were presented in comparative tables. Results indicate that although the indexes are able to recognise STV variation, they show substantial differences in magnitude and some in sensibility. Results depend on the frequency used to acquire and store FHR data (depending on devices); in general, the lower is data rate the more degraded are the results. Furthermore, results differently depend on FHR mean, some for their intrinsic definition; differences arise also in correspondences of accelerations and decelerations. Our results demonstrate that only indexes which refer directly to differences in FHR values, such as Organ and SD indexes, not show dependence on FHR mean. The use of the Standard Deviation index may provide efficient information while showing independence from the considered variables. Indexes performance in case of real cardiotocographic signals were also presented as examples.


Medical & Biological Engineering & Computing | 2001

Automatic recognition of vertebral landmarks in fluoroscopic sequences for analysis of intervertebral kinematics

Paolo Bifulco; Mario Cesarelli; R. Allen; Mario Sansone; Marcello Bracale

Intervertebral kinematics closely relates to the functionality of the spinal segments. Direct measurement of the intervertebral kinematics in vivo is very problematic. The use of a fluoroscopic device can provide continuous screening of the lumbar tract during patient spontaneous motion, with an acceptable, low X-ray dose. The kinematic analysis is intended to be limited to planar motion. Kinematic parameters are computed from vertebral landmarks on each frame of the image sequence. Landmarks are normally selected manually in spite of the fact that this is subjective, tedious to perform and regarded as one of the major contributors to errors in the computed kinematic parameters. The aim of this work is to present an innovative method for the automatic recognition of vertebral landmarks throughout a fluoroscopic image sequence to provide an objective and more precise quantification of intervertebral kinematics. The recognition procedure is based upon comparing vertebral features in two adjacent frames by means of a cross-correlation index, which is also robust despite the low signal-to-noise ratio of the lumbar fluoroscopic images. To provide a quantitative assessment of this method a calibration model was used which consisted of two lumbar vertebrae linked by a universal joint. The reliability and accuracy of the kinematic measurements have been investigated. The errors are of the order of a millimetre for the localisation of the intervertebral centre of rotation and tenths of a degree for the intervertebral angle. Error analysis suggests that this method improves the accuracy of the intervertebral kinematic calculations and has the potential to automate the selection of anatomical landmarks.


Proceedings of the 11th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON 2007), 26-30 June 2007, Ljubljana, Slovenia | 2007

Bluetooth portable device for continuous ECG and patient motion monitoring during daily life

Paolo Bifulco; Gaetano Gargiulo; Maria Fiammetta Romano; Antonio Fratini; Mario Cesarelli

Continuous patient monitoring during daily life can provide valuable information to different medical specialties. Indeed, long recording of related cardiac signals such as ECG, respiration and also other information such as body motion can improve diagnosis and monitor the evolution of many widespread diseases. Key-issues for portable or even wearable biomedical devices are: power consumption, longterm sensors, comfortable wearing, easy and wireless connectivity. Within this scenario, is valuable to realize prototypes making use of novel electronic technologies and common available communication technologies to assess practical use of long-term personal monitoring and foster new ways to provide healthcare services. We realized a small, battery powered, portable monitor capable to record ECG and body three-axes acceleration and continuously wireless transmit to any Bluetooth device including PDA or cellular phone. The ECG front end offers ultra-high input impedance allowing use of dry, long-lasting electrodes such conductive rubbers or novel textile electrodes that can be embedded in clothes. A small size MEMS 3-axes accelerometer was also integrated. Patient monitor incorporate a microprocessor that controls 12-bit ADC of signals at programmable sampling frequencies (e.g. 100 Hz) and drives a Bluetooth module capable to reliable transmit real-time signals within 10 m range. All circuitry can be powered by a standard mobile phone like Ni-MH 3.6V battery that can sustain more than seven day continuous functioning utilizing the Bluetooth Sniff mode to reduce TX power. At the moment we are developing dedicated software to process data and to extract concise parameters valuable for medical studies.


Medical Engineering & Physics | 2002

Estimation of out-of-plane vertebra rotations on radiographic projections using CT data: A simulation study

Paolo Bifulco; Mario Sansone; Mario Cesarelli; R. Allen; Marcello Bracale

This study extends previous research concerning in vivo intervertebral motion by means of single-plane fluoroscopy in an attempt to overcome 2D analysis limitations. Knowledge of out-of-plane vertebra rotations will extend the results provided by planar kinematic studies, which is particularly important for lateral bending investigation where axial rotation accompanies side bending, but is also valuable in sagittal analysis (e.g. indicating an absence of coupled axial rotation). Combining a fluoroscopic projection of a vertebra with volumetric information provided by CT data, vertebra 3D position can be estimated. Out-of-plane vertebral rotations are estimated by comparing Digitally Reconstructed Radiographs (DRRs) in different orientations with a reference fluoroscopic projection, maximising the image cross-correlation index. DRRs have been computed from CT-data using a ray-casting algorithm. In this work a feasibility study of the method was performed by means of a computer simulation. To this end the CT volume (vertebra L4, segmented) provided by the Visible Human Project was utilised and reference fluoroscopic projections were simulated in different orientations adding various levels of noise. Accuracy and precision of the proposed method was determined. Error analysis reveals that an accuracy of less than 1 degree can be achieved in computation of out-of-plane vertebral angles.


Medical Engineering & Physics | 2011

Advanced template matching method for estimation of intervertebral kinematics of lumbar spine

Tommaso Cerciello; Maria Fiammetta Romano; Paolo Bifulco; Mario Cesarelli; R. Allen

Diagnosis of low back pain and other degenerative spinal pathologies can be extremely difficult and, so far, there are not accepted standards. In general, such pathologies are associated with alteration of mechanical properties of spine and, in particular, with the instability of spinal motion. Intervertebral kinematics can be a valuable, objective method to assess the functionality of spinal segments. Fluoroscopic imaging system can provide continuous screening of lumbar tracts during patients motion, with an acceptable low X-ray dose. Estimation of intervertebral kinematics relies on accurate recognition of vertebrae positions throughout the fluoroscopic sequence: specific vertebrae features are identified and tracked either by manual selection or by automated methods. This study presents a new method of vertebra tracking, based on image template matching of the contour of the vertebral body for an accurate intervertebral kinematics analysis. An image gradient operator was utilized to obtain the vertebral contours; it operates after an edge-preserving smoothing filter designed to reduce low dose X-ray image noise. Once a template is defined for each vertebra, this is used to determine the best vertebral location in each image throughout the fluoroscopic sequence. Accuracy of the proposed method was tested using images of a calibration model. Average error achieved for the intervertebral angle is of the order of 0.4° and approximately 2mm for the intervertebral centre of rotation. Five fluoroscopic lumbar sequences of healthy volunteers undergoing passive flexion-extension motion were processed. The intervertebral kinematics was compared with other methods (automated and manual) by an estimation of measurement error. Results showed that the current method provides a better representation of the evolution over time of kinematic parameters. In particular, root mean square differences between the current method and a manual selection procedure performed by an experienced and trained clinician resulted 1.3° for the intervertebral angles and 0.9 mm for the intervertebral trajectory. The proposed method provides an effective, automated and objective technique for estimation of intervertebral kinematics of lumbar spine.


EURASIP Journal on Advances in Signal Processing | 2010

2D-3D registration of CT vertebra volume to fluoroscopy projection: a calibrationmodel assessment

Paolo Bifulco; Mario Cesarelli; R. Allen; Maria Fiammetta Romano; Antonio Fratini; Giulio Pasquariello

This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.


Biomedical Signal Processing and Control | 2010

An algorithm for FHR estimation from foetal phonocardiographic signals

Mariano Ruffo; Mario Cesarelli; Maria Fiammetta Romano; Paolo Bifulco; Antonio Fratini

The long-term foetal surveillance is often to be recommended. Hence, the fully non-invasive acoustic recording, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the recorded heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. In this paper, we present a new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings. A filtering is employed as a first step of the algorithm to reduce the background noise. A block for first heart sounds enhancing is then used to further reduce other components of foetal heart sound signals. A complex logic block, guided by a number of rules concerning foetal heart beat regularity, is proposed as a successive block, for the detection of most probable first heart sounds from several candidates. A final block is used for exact first heart sound timing and in turn foetal heart rate estimation. Filtering and enhancing blocks are actually implemented by means of different techniques, so that different processing paths are proposed. Furthermore, a reliability index is introduced to quantify the consistency of the estimated foetal heart rate and, based on statistic parameters; [,] a software quality index is designed to indicate the most reliable analysis procedure (that is, combining the best processing path and the most accurate time mark of the first heart sound, provides the lowest estimation errors). The algorithm performances have been tested on phonocardiographic signals recorded in a local gynaecology private practice from a sample group of about 50 pregnant women. Phonocardiographic signals have been recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by our algorithm and the other provided by cardiotocographic device). Our results show that the proposed algorithm, in particular some analysis procedures, provides reliable foetal heart rate signals, very close to the reference cardiotocographic recordings.


Biomedical Signal Processing and Control | 2012

A comparison of denoising methods for X-ray fluoroscopic images

Tommaso Cerciello; Paolo Bifulco; Mario Cesarelli; Antonio Fratini

Fluoroscopic images exhibit severe signal-dependent quantum noise, due to the reduced X-ray dose involved in image formation, that is generally modelled as Poisson-distributed. However, image gray-level transformations, commonly applied by fluoroscopic device to enhance contrast, modify the noise statistics and the relationship between image noise variance and expected pixel intensity. Image denoising is essential to improve quality of fluoroscopic images and their clinical information content. Simple average filters are commonly employed in real-time processing, but they tend to blur edges and details. An extensive comparison of advanced denoising algorithms specifically designed for both signal-dependent noise (AAS, BM3Dc, HHM, TLS) and independent additive noise (AV, BM3D, K-SVD) was presented. Simulated test images degraded by various levels of Poisson quantum noise and real clinical fluoroscopic images were considered. Typical gray-level transformations (e.g. white compression) were also applied in order to evaluate their effect on the denoising algorithms. Performances of the algorithms were evaluated in terms of peak-signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), mean square error (MSE), structural similarity index (SSIM) and computational time. On average, the filters designed for signal-dependent noise provided better image restorations than those assuming additive white Gaussian noise (AWGN). Collaborative denoising strategy was found to be the most effective in denoising of both simulated and real data, also in the presence of image gray-level transformations. White compression, by inherently reducing the greater noise variance of brighter pixels, appeared to support denoising algorithms in performing more effectively.


Computer Methods and Programs in Biomedicine | 2012

Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms

Mario Cesarelli; Mariano Ruffo; Maria Fiammetta Romano; Paolo Bifulco

A valuable alternative to traditional diagnostic tools, such as ultrasonographic cardiotocography, to monitor general foetal well-being by means of foetal heart rate analysis is foetal phonocardiography, a passive and low cost recording of foetal heart sounds. In this paper, it is presented a simulator software of foetal phonocardiographic signals relative to different foetal states and recording conditions (for example different kinds and levels of noise). Before developing the software, a data collection pilot study was conducted with the purpose of specifically identifying the characteristics of the waveforms of the foetal and maternal heart sounds, since the available literature is not rigorous in this area. The developed software, due to the possibility to simulate different physiological and pathological foetal conditions and recording situations simply modifying some system parameters, can be useful as a teaching tool for demonstration to medical students and others and also for testing and assessment of foetal heart rate extraction algorithms from foetal phonocardiographic (fPCG) recordings. On this purpose, the simulator software was used to test an algorithm developed by the authors for foetal heart rate extraction considering different foetal heart rate parameters and signal to noise ratio values. Our tests demonstrated that simulated fPCG signals are very close to real fPCG recordings.

Collaboration


Dive into the Mario Cesarelli's collaboration.

Top Co-Authors

Avatar

Paolo Bifulco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Fiammetta Romano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonio Fratini

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Iuppariello

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Pasquariello

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marcello Bracale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Mariano Ruffo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge