Mario Dell'Agli
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Dell'Agli.
Toxicology and Applied Pharmacology | 2012
Emanuela Corsini; Enrico Sangiovanni; Anna Avogadro; Valentina Galbiati; Barbara Viviani; Marina Marinovich; C. Galli; Mario Dell'Agli; Dori R. Germolec
We have previously shown that PFOA and PFOS directly suppress cytokine secretion in immune cells, with different mechanisms of action. In particular, we have demonstrated a role for PPAR-α in PFOA-induced immunotoxicity, and that PFOS has an inhibitory effect on LPS-induced I-κB degradation. These studies investigate the immunomodulatory effects of four other PFCs, namely PFBS, PFOSA, PFDA, and fluorotelomer using in vitro assays. The release of the pro-inflammatory cytokines IL-6 and TNF-α was evaluated in lipolysaccharide (LPS)-stimulated human peripheral blood leukocytes (hPBL) and in the human promyelocytic cell line THP-1, while the release of IL-10 and IFN-γ was evaluated in phytohemagglutinin (PHA)-stimulated hPBL. All PFCs suppressed LPS-induced TNF-α production in hPBL and THP-1 cells, while IL-6 production was suppressed by PFOSA, PFOS, PFDA and fluorotelomer. PFBS, PFOSA, PFOS, PFDA and fluorotelomer inhibited PHA-induced IL-10 release, while IFN-γ secretion was affected by PFOSA, PFOS, PFDA and fluorotelomer. Leukocytes obtained from female donors appear to be more sensitive to the in vitro immunotoxic effects of PFCs when their responses are compared to the results obtained using leukocytes from male donors. Mechanistic investigations demonstrated that inhibition of TNF-α release in THP-1 cells occurred at the transcriptional level. All PFCs, including PFOA and PFOS, decreased LPS-induced NF-κB activation. With the exception of PFOA, none of the PFCs tested was able to activate PPARα driven transcription in transiently transfected THP-1 cells, excluding a role for PPARα in the immunomodulation observed. PFBS and PFDA prevented LPS-induced I-κB degradation. Overall, these studies suggest that PFCs affect NF-κB activation, which directly suppresses cytokine secretion by immune cells. Our results indicate that PFOA is the least active of the PFCs examined followed by PFBS, PFDA, PFOS, PFOSA and fluorotelomer.
Toxicology and Applied Pharmacology | 2011
Emanuela Corsini; Anna Avogadro; Valentina Galbiati; Mario Dell'Agli; Marina Marinovich; C. Galli; Dori R. Germolec
There is evidence from both epidemiology and laboratory studies that perfluorinated compounds may be immunotoxic, affecting both cell-mediated and humoral immunity. The overall goal of this study was to investigate the mechanisms underlying the immunotoxic effects of perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA), using in vitro assays. The release of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was evaluated in lipolysaccharide (LPS)-stimulated human peripheral blood leukocytes and in the human promyelocytic cell line THP-1, while the release of IL-4, IL-10 and IFN-γ was evaluated in phytohaemagglutinin (PHA)-stimulated peripheral blood leukocytes. PFOA and PFOS suppressed LPS-induced TNF-α production in primary human cultures and THP-1 cells, while IL-8 was suppressed only in THP-1 cells. IL-6 release was decreased only by PFOS. Both PFOA and PFOS decreased T-cell derived, PHA-induced IL-4 and IL-10 release, while IFN-γ release was affected only by PFOS. In all instances, PFOS was more potent than PFOA. Mechanistic investigations carried out in THP-1 cells demonstrated that the effect on cytokine release was pre-transcriptional, as assessed by a reduction in LPS-induced TNF-α mRNA expression. Using siRNA, a role for PPAR-α could be demonstrated for PFOA-induced immunotoxicity, while an inhibitory effect on LPS-induced I-κB degradation could explain the immunomodulatory effect of PFOS. The dissimilar role of PPAR-α in PFOA and PFOS-induced immunotoxicity was consistent with the differing effects observed on LPS-induced MMP-9 release: PFOA, as the PPAR-α agonist fenofibrate, modulated the release, while PFOS had no effect. Overall, these studies suggest that PFCs directly suppress cytokine secretion by immune cells, and that PFOA and PFOS have different mechanisms of action.
Malaria Journal | 2010
Mario Dell'Agli; G.V. Galli; Michela Bulgari; Nicoletta Basilico; Sergio Romeo; Deepak Bhattacharya; Donatella Taramelli; Enrica Bosisio
BackgroundThe sun-dried rind of the immature fruit of pomegranate (Punica granatum) is presently used as a herbal formulation (OMARIA, Orissa Malaria Research Indigenous Attempt) in Orissa, India, for the therapy and prophylaxis of malaria. The pathogenesis of cerebral malaria, a complication of the infection by Plasmodium falciparum, is an inflammatory cytokine-driven disease associated to an up-regulation and activity of metalloproteinase-9 and to the increase of TNF production. The in vitro anti-plasmodial activity of Punica granatum (Pg) was recently described. The aim of the present study was to explore whether the anti-malarial effect of OMARIA could also be sustained via other mechanisms among those associated to the host immune response.MethodsFrom the methanolic extract of the fruit rind, a fraction enriched in tannins (Pg-FET) was prepared. MMP-9 secretion and expression were evaluated in THP-1 cells stimulated with haemozoin or TNF. The assays were conducted in the presence of the Pg-FET and its chemical constituents ellagic acid and punicalagin. The effect of urolithins, the ellagitannin metabolites formed by human intestinal microflora, was also investigated.ResultsPg-FET and its constituents inhibited the secretion of MMP-9 induced by haemozoin or TNF. The effect occurred at transcriptional level since MMP-9 mRNA levels were lower in the presence of the tested compounds. Urolithins as well inhibited MMP-9 secretion and expression. Pg-FET and pure compounds also inhibited MMP-9 promoter activity and NF-kB-driven transcription.ConclusionsThe beneficial effect of the fruit rind of Punica granatum for the treatment of malarial disease may be attributed to the anti-parasitic activity and the inhibition of the pro-inflammatory mechanisms involved in the onset of cerebral malaria.
British Journal of Nutrition | 2008
Mario Dell'Agli; Omar Maschi; G.V. Galli; R. Fagnani; Esther Dal Cero; Donatella Caruso; Enrica Bosisio
The aim of the present study was to confirm that olive oil phenols reduce human platelet aggregability and to verify the hypothesis that cAMP- and cGMP- phosphodiesterases (PDE) could be one of the targets of the biological effect. Four extracts from oils characterized by a high phenol content (HPE), and low phenol levels (LPE) were prepared and analyzed qualitatively and quantitatively by HPLC-UV and electrospray ionization-MS/MS. Human washed platelets stimulated with thrombin were used for the aggregation assay. Human platelet cAMP-PDE and recombinant PDE5A1 were used as enzyme source. Platelet aggregation and enzyme activity were assayed in the presence of HPE, LPE and individual phenols. The phenol content of HPE ranged between 250 and 500 mg/kg, whereas the LPE content was 46 mg/kg. The compounds identified were hydroxytyrosol (HT), tyrosol (TY), oleuropein aglycone (OleA) and the flavonoids quercetin (QU), luteolin (LU) and apigenin (AP). OleA was the most abundant phenol (range 23.3 to 37.7 %) and LU was the most abundant flavonoid in the extracts. Oil extracts inhibited platelet aggregation with an 50% inhibitory concentration interval of 1.23-11.2 microg/ml. The inhibitory effect of individual compounds (10 microm) including homovanillyl alcohol (HVA) followed this order: OleA>LU>HT = TY = QU = HVA, while AP was inactive. All the extracts inhibited cAMP-PDE, while no significant inhibition of PDE5A1 (50 microg/ml) was observed. All the flavonoids and OleA inhibited cAMP-PDE, whereas HT, TY, HVA (100 microm) were inactive. Olive oil extracts and part of its phenolic constituents inhibit platelet aggregation; cAMP-PDE inhibition is one mechanism through which olive oil phenols inhibit platelet aggregation.
PLOS ONE | 2013
Enrico Sangiovanni; Urska Vrhovsek; Giuseppe Rossoni; Elisa Colombo; Cecilia Brunelli; Laura Brembati; Silvio Trivulzio; Mattia Gasperotti; Fulvio Mattivi; Enrica Bosisio; Mario Dell'Agli
Ellagitannins have shown anti-inflammatory and anti-Helicobacter pylori properties; however, their anti-inflammatory activity at gastric level was not previously investigated. The aim of this research was to evaluate the effects of ellagitannins from Rubus berries on gastric inflammation. Ellagitannin enriched extracts (ETs) were prepared from Rubus fruticosus L. (blackberry) and Rubus idaeus L. (raspberry). The anti-inflammatory activity was tested on gastric cell line AGS stimulated by TNF-α and IL-1β for evaluating the effect on NF-kB driven transcription, nuclear translocation and IL-8 secretion. In vivo the protective effect of ellagitannins was evaluated in a rat model of ethanol-induced gastric lesions. Rats were treated orally for ten days with 20 mg/kg/day of ETs, and ethanol was given one hour before the sacrifice. Gastric mucosa was isolated and used for the determination of IL-8 release, NF-kB nuclear translocation, Trolox equivalents, superoxide dismutase and catalase activities. In vitro, ETs inhibited TNF-α induced NF-kB driven transcription (IC50: 0.67–1.73 µg/mL) and reduced TNF-α-induced NF-kB nuclear translocation (57%–67% at 2 µg/mL). ETs inhibited IL-8 secretion induced by TNF-α and IL-1β at low concentrations (IC50 range of 0.7–4 µg/mL). Sanguiin H-6 and lambertianin C, the major ETs present in the extracts, were found to be responsible, at least in part, for the effect of the mixtures. ETs of blackberry and raspberry decreased Ulcer Index by 88% and 75% respectively and protected from the ethanol induced oxidative stress in rats. CINC-1 (the rat homologue of IL-8) secretion in the gastric mucosa was reduced in the animals receiving blackberry and raspberry ETs. The effect of ETs on CINC-1 was associated to a decrease of NF-κB nuclear translocation in ETs treated animals. The results of the present study report for the first time the preventing effect of ETs in gastric inflammation and support for their use in dietary regimens against peptic ulcer.
European Neuropsychopharmacology | 2012
Raffaella Molteni; Flavia Macchi; Claudia Zecchillo; Mario Dell'Agli; Elisa Colombo; Francesca Calabrese; Gianluigi Guidotti; Giorgio Racagni; Marco Riva
Growing evidence suggests that the activation of the inflammatory/immune system contributes to depression pathogenesis, a hypothesis that might hold strong clinical implication. Indeed more than 30% of depressed patients fail to achieve remission, which poses the necessity to identify systems that may represent novel targets for medications. Accordingly, goal of this study was to evaluate the ability of the antidepressant agomelatine to modulate specific components of the immune response in the rat brain following an inflammatory challenge with lipopolysaccharide (LPS). To this aim, adult male rats were chronically treated with agomelatine before being acutely challenged with LPS 16 h after the last drug administration. Rats were sacrificed 2, 6, or 24h after the challenge and several components of the inflammatory response have been investigated by using real-time PCR or ELISA. We found that agomelatine significantly reduced the LPS-induced up-regulation of the pro-inflammatory cytokines interleukin-1β and interleukin-6 in the rat brain as well as at peripheral level. At central level, these effects are associated to the inhibition of NF-κB translocation as well as to alterations of mechanisms responsible for microglia activation. In addition, we found that agomelatine was also able to alter the expression of enzymes related to the kynurenine pathway that are thought to represent important mediators to inflammation-related depression. These data disclose novel properties that may contribute to the therapeutic effect of agomelatine providing evidence for a crucial role of specific components of the immune/inflammatory system in the antidepressant response and thereby in depression etiopathology.
Evidence-based Complementary and Alternative Medicine | 2013
Elisa Colombo; Enrico Sangiovanni; Mario Dell'Agli
Several biological activities of pomegranate have been widely described in the literature, but the anti-inflammatory effect in the gastrointestinal tract has not been reviewed till now. The aim of the present paper is to summarize the evidence for or against the efficacy of pomegranate for coping with inflammatory conditions of the gastro-intestinal tract. The paper has been organized in three parts: (1) the first one is devoted to the modifications of pomegranate active compounds in the gastro-intestinal tract; (2) the second one considering the literature regarding the anti-inflammatory effect of pomegranate at gastric level; (3) the third part considers the anti-inflammatory effect of pomegranate in the gut. In vivo studies performed on the whole fruit or juice, peel, and flowers demonstrate antiulcer effect in a variety of animal models. Ellagic acid was the main responsible for this effect, although other individual ellagitannins could contribute to the biological activity of the mixture. Different preparations of pomegranate, including extracts from peels, flowers, seeds, and juice, show a significant anti-inflammatory activity in the gut. No clinical studies have been found, thus suggesting that future clinical studies are necessary to clarify the beneficial effects of pomegranate in the gastrointestinal tract.
Journal of Agricultural and Food Chemistry | 2008
Omar Maschi; Esther Dal Cero; Germana V. Galli; Donatella Caruso; Enrica Bosisio; Mario Dell'Agli
Mechanisms underlying the spasmolytic activity of chamomile still remain unclear. Inhibition of cAMP- and cGMP-phosphodiesterases (PDE) is one of the mechanisms operated by spasmolytic drugs. In this study, the effect of chamomile on PDE was investigated. Human platelet cAMP-PDE and recombinant PDE5A1 were assayed in the presence of infusions prepared from sifted flowers and capitula. LC-ESI-MS/MS analysis showed different compositions in infusions made with sifted flowers and capitula. Chamomile inhibited cAMP-PDE activity (IC50 = 17.9-40.5 microg/mL), while cGMP-PDE5 was less affected (-15% at 50 microg/mL). Among the individual compounds tested, only flavonoids showed an inhibitory effect (IC50 = 1.3-14.9 microM), contributing to around 39% of the infusion inhibition; other compounds responsible for cAMP-PDE inhibition still remain unknown. Although experimental evidence supporting the use of chamomile for gastrointestinal minor spasms dates back to the fifties, cAMP-PDE inhibition as a likely mechanism underlying the spasmolytic activity is reported for the first time.
Cellular and Molecular Life Sciences | 2005
Mario Dell'Agli; Stefano Bellosta; Luca Rizzi; G.V. Galli; M. Canavesi; F. Rota; R. Parente; Enrica Bosisio; Sergio Romeo
Abstract.Catechins are able to modulate the gelatinolytic activity of matrix metalloproteinase-9 (MMP-9) by reducing its release from macrophages. Gallocatechins decrease MMP-9 secretion by lowering MMP-9 promoter activity and mRNA levels. The effect appears to be dependent on some structural and stereochemical requirements. In this study, the relationship between chemical structure and activity was studied by testing the effect of analogues of (±)-gallocatechin-3-gallate (±)-GCG, selectively deprived of hydroxyl groups, on MMP-9 activity, transcription, and secretion. Our results indicate that (±)-GCG and (±)-catechin-3-gallate are characterized by a substitution pattern compatible with direct inhibition of MMP-9 activity. Conversely, when transcription was the target, (±)-trans-3-flavanol-3-benzoate, lacking all the hydroxyl groups, was the most effective both in lowering MMP-9 promoter activity and consequently protein secretion, and in inhibiting nuclear-factor-κB-driven transcription. Our results suggest that the structural requirements for enzyme inhibition are different from those necessary for targeting gene expression.
Evidence-based Complementary and Alternative Medicine | 2013
Chiara Di Lorenzo; Mario Dell'Agli; Elisa Colombo; Enrico Sangiovanni; Patrizia Restani
Metabolic syndrome is defined as the clustering in an individual of several metabolic abnormalities associated with insulin resistance, type 2 diabetes, and obesity, in which low-grade chronic inflammatory activity is commonly observed. Part of the European Project PlantLIBRA is concerned with methods to assess the benefits of plant food supplements (PFSs) in countering inflammatory activity and metabolic syndrome. This paper summarizes the current methods used for benefit assessment of PFS, taking into consideration only in vitro, in silico, and clinical methodologies used to investigate the anti-inflammatory properties of plants. No in silico studies (using computer simulation) related to metabolic syndrome were found; these methods appear to be used exclusively for identifying or testing potentially effective compounds in drug development. Most in vitro methods for the assessment of beneficial effects of botanicals or plant food supplements in diabetes were based on a quantitative polymerase chain reaction (PCR), whereas the preferred kind of clinical study was the double-blind randomized controlled clinical trial. Only two parameters were observed to change after treatment with botanicals in both in vitro and in vivo studies: interleukin-6 and tumour necrosis factor-α, and these biomarkers should be carefully considered in future studies for PFS benefit assessment.